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Abstract

This study produced an image processing algorithm

development tool on a VAX computer system using the recent

advances in an Image Algebra developed by G. Ritter et al at

the University of Florida. The image algebra provides the

basis for a hardware and software independent environment for

the expression of practically all image processing algorithms.

The goals of this project were twofold. The first goal

was the implementation of the image algebra operators in a

high level language to achieve hardware independence. The

second goal was the design and implementation of a flexible

preprocessor that could translate image processing algorithms,

written in the image algebra language, into a high level

computer language which could be compiled and executed on the

VAX computer.

The implementation was achieved in tle PASCAL computer

language. All of the basic image algebra operators and the

preprocessor were successfully programmed on the VAX computer,

but a complete software independence of the image algebra was

not achieved. This version also produces very large blocks of

executable code for relatively simple algorithms.

Examples of the power and simplicity of the image algebra

langauge and preprocessor environment are included.

vii
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A PASCAL IMPLEMENTATION OF THE IMAGE ALGEBRA

I. Introduction

Background

Developers of image processing algorithms in military,

industrial, and academic organizations have built large

computer programs to facilitate their development work. Each

program is the result of a constant evolution of image

processing operations within each organization. Unfortunately,

in the process of building excellent "in-house" development

tools, each organization has created an image processing '

environment different from every other. Some image processing

operations are unique to one environment while others may be

common to a number of environments. But, since there is no

common mathematical basis for all of these operations, it is

often impossible to analyze and compare one environment with

another.

This situation creates two major problems for the

customers of image processing software, especially for the

Department of Defense: (1) increased costs through funding of

research and development in several organizations separately

producing similar or identical processes, and (2) difficulty

in analyzing and comparing the performance of competing

algorithms (1:1-2). j m
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Realizing this situation would create incompatibility and

unnecessary confusion between competing automatic target

recognition (ATR) algorithms, the Air Force Armament

Laboratory (AFATL) at Eglin AFB, Florida contracted the

University of Florida to develop an Image Algebra (IA). The

goal the Image Algebra Project is

..the development of a complete, unified algebraic
structure that provides a common mathematical enivi-
ronment for image algorithm development, optimization,
comparison, coding, and performance evaluation. (1:2)

The primary goal of the AFATL was a concise mathematical

structure for representing image transformations that was

simple to learn yet powerful enough to perform any image

processing operation. Toward this goal, the AFATL outlined a

number of desirable properties that a useful image algebra

should possess. These properties guided the development of

the image algebra (1:3-4):

1. Basic operations that can model any image.
2. Elemental operations that can be combined to
express any gray level image transformation.
3. Elemental operations that are few, simple, and
easily learned by potential users.
4. Theorems that enable the simplification and
optimization of algorithms through the use of
identities involving the operators.
5. Notation that provides an understanding of image
manipulations and is capable of suggesting new
techniques.
6. Notation that allows programming languages to
substitute concise image algebraic expressions for
large blocks of code.
7. Notation that allows the use of libraries of
image transformations.
8. Machine and language independence.
9. Compatibility with both sequential and massively

parallel processors.

1-2
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The result of this work by the University of Florida is

an algebraic structure consisting of two operands, images and

templates, and eight binary operators. Operations may occur

between two images, an image and a template, or two templates.

The result of these operations may be "n image, a template, or

a scalar.

Problem

The task of this thesis project is to implement the image

algebra, as conceived by the University of Florida, on the VAX

11/780 located at the Air Force Institute of Technology. The

implementation is to preserve the desirable properties of the

image algebra outlined by AFATL and listed above. Consistency

between the Air Force Institute of Technology image algebra

- (AFITIA) and the University of Florida image algebra (UFIA) is

to be maintained.

Scope

The description of the image algebra continues to evolve

at the University of Florida. Consequently, this project will

not reflect the more recent changes to the structure. This

iml ementation is based upon the description of the image

algebra in the Image Algebra Tutorial and in the Final Report

from Phase I of the Image Algebra Project (1,2).

This implementation is accomplished in the PASCAL

computer language due to its availability and the experience

1-3
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of the author. All of the PASCAL source code listed in the

appendices was originally developed in TurboPascal (3),

translated to VAX PASCAL (4), and ported to the VAX 11/780 at

the Air Force Institute of Technology (AFIT).

General Approach

The general approach taken in this thesis project is the

development of a computer program from the bottom up. This is

contrary to accepted program development methods but it is

desirable in this case. Consistency between the operands and

operators of the UFIA description and AFITIA implementation is

a primary concern in this project. Consequently, an

implementation driven by the structure of the low level

operands and operators is preferable.

The first task involves implementing the image algebra

(IA) operands in PASCAL data structures and translating the IA ".

operators to PASCAL procedures and functions. Based upon this

design, the next task is the programming of an IA preprocessor

that translates an IA description of any image processing

operation into PASCAL source code for subsequent compilation.

The final task is to install the image algebra routines and

preprocessor into an environment on the VAX that allows a user

to quickly implement any image processing operation.

1-4
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Sequence of Presentation

The following report is divided into four major sections.

Section II defines the basic operands and operators of the

image algebra. Section III discusses the design of a general

implementation of the image algebra to achieve a useful image

processing development tool. Section IV covers the major part

of this project: the design and implementation of an image

algebra at AFIT. Section V compares three different image

processing algorithms implemented in both PASCAL source code

and the image algebra language. Finally, Section VI contains

some general remarks on the accomplishments of this project

and suggests some follow up projects. The appendices contain

the source code to all of the AFIT image algebra programs.

o%
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II. Image AlgebraN

After studying the underlying operations of hundreds of

existing image processing algorithms, the University of

Florida investigators determined all of these routines could

be performed with a small set of operands and operators. In

fact, they proved this set of operands and operators, in

conjunction with a programming language such as FORTRAN, is

sufficient to perform any image-to-image transformation (1:48-

62). This implies the image algebra operands and operators

can be used to program all image transformations.

The next sections describe the image algebra operands,

operators, and notation as developed by the University of

Florida. These sections provide the reader with enough

background to understand the subsequent sections of this

report. The reader is directed to the Image Algebra Tutorial

for a more complete mathematical description of the operands

and operators (1:9-39).

Image Algebra Operands

The UFIA description contains six explicit operands: the

set of real numbers, the set of complex numbers, any finite

subset of k-dimensional space called X, the power set on X,

the set of all images on X, and the set of templates on X.

(1:6) Although these six operands completely define a

2-1
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heterogeneous algebra, there are only two operands of primary

interest in this project: images and templates.

Images are multiple dimension arrays of arbitrary

integral size and may be integer, real, or complex valued. %

The points in images are referred to as pixels and each pixel

in the array has a unique spatial identifier. In common image

processing tasks, images represent two dimensional arrays of

gray values describing scenes collected from vidicons, laser

rangefinders, synthetic aperture radar, infrared imagers, or

other sensing devices. %

Images in the UFIA are denoted with capital letters from %

the beginning of the alphabet such as A, B, or C. Arbitrary

pixels in n-dimensional images are depicted with n-dimensional

vectors such as k. That is, an arbitrary pixel in image A is

denoted A(k). The gray level at a particular image pixel is

depicted with a lower case letter of the image designator:

a(k) represents the gray level at pixel k in image A (1:9).

To perform many image processing tasks, it must be

possible to selectively choose and weight image pixels within

small neighborhoods. The image algebra provides templates for

this job. Templates, sometimes called windows or masks, are

multiple dimension arrays of integral size and may be integer,

real, or complex valued. Templates may be of arbitrary size ,

and configuration but they are usually much smaller than a

images. Image algebra templates consist of two elements:

2. 2
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(a)

(b) (c) (d) (e)

Figure 2.1 Examples of Image Algebra Templates

(1) a configuration of pixels, and (2) a weight at each pixel

in the configuration. The template configuration describes

the relative orientation of all template pixels where the

center pixel is commonly defined as the origin. The center

pixel can be defined as any pixel in the configuration: it is

* not necessarily the physical center of the configuration.

Only pixels in the template configuration may have non-zero

values; any pixel not in the configuration has zero weight

(1:23). Some examples of two dimensional templates are shown A

in Figure 2.1. The center of each template is marked with

asterisks. For the purposes of the UFIA and this report, some

of the template configurations have special names: Figure

2.1(a) is a horizontal template of size five, 2.1(d) is a

vertical template of size five, 2.1(b) is a three-by-three

Moore template (2:152), and 2.1(c) is a Von Neumann template

of radius one (2:152).

'-
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The UFIA template notation is similar to the UFIA image

. notation. Templates are denoted with capital letters from the

end of the alphabet such as R, S, or T. Arbitrary pixels in

m-dimensional templates are depicted with m-dimensional

vectors such as y. For example, arbitrary pixel locations in

template S are denoted by S(y). The weight of a template

pixel is represented by a lower case letter of the template

designator: s(y) denotes the weight at pixel y in template S

(1:23).

There are two types of templates defined by the UFIA:

variant and invariant. Variant templates may alter the

weights of their pixels depending upon the location of the

template in an image; that is, the pixel weights in variant

templates are functions of the template position in an image.

As the name implies, invariant templates are not allowed to

alter their pixel weights during any operation with an image.

Image Algebra Operations

Due to various combinations of the two operands and eight

operators of the image algebra, there are fourteen elemental

operations as described by the University of Florida. The

result of these operations can be an image, a template, or a

scalar. There are unary and binary operations on both images

and templates and binary operations between images and

templates, but these fourteen operations are not necessarily

the only ones supported by the image algebra. According to

2-4
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the University of Florida,

In general, all elementary functions supported
by all the common higher level languages such as
FORTRAN, PASCAL, etc. (i.e. sine, cosine, logs, expo-
nential, etc.), are accepted operations of the image
algebra. (5:15)

Figure 2.2 shows the names, notation, and mathematical

description of the fourteen elemental operations in the image

algebra. The vector k represents arbitrary pixels in an n-

dimensional image, and the vectors x, y, and z represent

arbitrary pixels in their associated i-dimensional templates.

The ordered pair (ki,c(k)) represents an arbitrary image pixel

and its associated gray value in the image C. Similarly, the

ordered pair (ztz)represents an arbitrary template pixel

and its associated weight in template T. The zero vector, 0,

denotes the center pixel of a template. In the dot product

operation, f is a scalar. The union of two images (A U B) or

two templates (R U S) is defined as the image or template

resulting from the union of all of the image or template

pixels in the two images or templates. The intersection of a

two images (A n B) or templates (R n s) is defined as the a

image or template resulting from the intersection of all of a

the image or template pixels in the two images or templates.

Image-IamigfOpeat~ions. There are five elemental binary

operations between images called image-image operations. Four

of these operations (addition, multiplication, maximum, and

exponentiation) result in another image. These operations are

2-5



Image-Image Operations

operation notation mathematical description
addition C = A + B =-((k,c(k)) :c(k) =a(k) + b(k)

where C is defined for A U B
multiplication C = A *B s ((k,c(k)) :c(k) = a(k) * b(k)

where C is defined for A n B
maximum C = A vB f(k,c(k)) :c(k) = max[a(k),b(k)])

where C is defined for A U B
exponentiation C = A **B {(ji,c(k)) : c(k) a(ki) ** b(ki)

where C is defined for A A B
dot product f = A -B ( f f E a(k)b(k)

where C is defined for A n B

Image-Template Operations

operation notation mathematical description
circle-plus C = A + R S( Q,c ( j) c(!i) = a(k+x)*r(xi)

where C is defined for A(k) n R(O)
circle-maximum C = A co R a(kj,c(k)) c(k) =max~a(k+x)*r(x)I}

where C is defined for A~k) n R(O)
square-maximum C = A &I R E ((k,c(li)) :c(k) =max[a(ki+x)+r(x)])

where C is defined for A(k) n R(O)

Template-Template Operations

operation notation mathematical description
addition T = R + S (z,t(z)) :t(z) = r(z) + s(z);

where T is defined for R U S
multiplication T =R * S (zt)) t(z) =r(z) * s(z)

where T is defined for R n sOl
maximum T = R v S f((z,t(z)) :t(z) =maxilr(g),s(z)]

where T is defined for R U S
circle-plus T =R 4& S ((z,t(z)) :t(z) = r(x)*s(y)

where zx+y and T is defined for R(O) U S(y)
circle-maximum T = R 6o S ((K,t(z)) :t(z) = max[r(x)*s(Y-)]

where z=x+y~ and T is defined for R(O) U S(y)
square-maximum T = R R S =_{(Z,t(z)) :t(z) =maxfr(x)*s(y)]

where zx+y and T is defined for R(O) U S(y)

Figure 2.2: Image Algebra Elemental Binary Operations

2-6



Image A Image B

d 11 12 13 14 15 11 12 13 14 15

21 22 23 24 25 21 22 23 24 25

31 32 33 34 35 31 32 33 34 35

41 42 43 44 45 41 42 43 44 45

51 52 53 54 55 51 52 53 54 55

Figure 2.3: Example of Image-Image Operations

performed on a pixel-to-pixel basis: a pixel of one image is

added, multiplied, maximized, or exponentially multiplied with

its spatially corresponding pixel in another image(1:12). For

example, Figure 2.3 shows two images, A and B, of dimension

5x5. If addition (C = A + B) is performed on the two images,

the resulting image is the sum of the two images at each pixel

location: C(1l) = A(11) + B(I1), C(12) = A(12) + B(12), .

C(55) = A(55) + B(55). Similarly, the image resulting from

the maximum operation (C = A v B) on these two images would

be: C(11) = max(A(11),B(11)), C(12) = max{A(12),B(12)),...,

C(55) = max(A(55),B(55)}. Multiplication and exponentiation

are analogous operations.

The fifth elemental binary operation is the dot (inner)

product. The result of this operation is a scalar, and it

provides the image algebra with a method of mapping images to

the real numbers. This operation is a sum of the product of

2-7
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spatially corresponding pixels in two images. Using the two

"%% images from Figure 2.3, the result = A(11)*B(11) + A(12)*B(12)

+ ... + A(55)*B(55).

These five elemental image operations can be used to

define other operations between images such iq subtraction,

division, and minimum (1:13).

Image-Template Operations. There are three elemental

binary operations between an image and a template called

image-template operations: circle-plus, circle-maximum, and

square-maximum. The result of these operations is an image.

Each pixel of the resultant image is a weighted function of

the original image pixel and its neighbors delimited by the

template configuration centered on this pixel (1:28). All

template pixels that lay outside of the image boundaries at

any image pixel are ignored.

The circle-plus operation performs a convolution: each

pixel is the sum of the products of template pixels and image '

pixels delimited by the template configuration centered over

the image pixel (1:28). For example, Figure 2.4 shows an

image A of dimension 5x5 and template Y of dimension 3x3 with

its center defined as y(5). If the circle-plus operation is

performed between this image and template, one calculation of

the operation is performed on the image pixel at row 3, column

4, shown as pixel A(34) in the figure. For the calculation at

this pixel, template Y is overlaid on image A with the center

2-8



Image A Template Y

11 I 12 13 14 15 1 2 3

21 22 23 24 25 4 * 5* 6

31 32 33 34 35 7 8 9

41 42 43 44 45

51 52 53 54 55

Figure 2.4: Example of Image-Template Operations

of the template, y(5), centered over pixel A(34). The

operation computes the sum of the products of each template

pixel and the image pixel it overlays. In this case, A(34)

y(1)*A(23) + y(2)*A(24) + y(3)*A(25) + y(4)*A(33)+ y(5)*A(34)
4'

A+ y(6)*A(35) + y(7)*A(43) + y(8)*A(44) + y(9)*A(45). This

calculation is repeated for each image pixel to complete the

entire circle-plus operation.

With the circle-maximum operator, each image pixel x is

replaced with the maximum product of image pixel gray values

within the neighborhood of x (defined by the template centered

over x) and the template pixel weights that overlay each image

pixel. With the square-maximum operator, each image pixel x

is replaced with the maximum sum of image pixel gray values

within the neighborhood of x (defined by the template centered

over x) and the template pixel weights that overlay each image

pixel. (1:28)

2-9
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The circle-maximum and square-maximum operators can both CC

perform gray level dilation depending upon the weights of the

template. By choosing a template of unity weight for the

circle-maximum operation and a template of zero weight for the

square-maximum operation, a gray level dilation is performed.

Figure 2.5(c) shows the result of dilating the image in 2.5(a)

with the square-maximum operator and template shown in 2.5(b).

As an example of the intermediate calculations in the square

maximum operation, the template is shown centered over two

pixels in 2.5(a). The result of the square-maximum operation

for these two pixels, the maximum value after summing each

template weight with the image pixel it overlays, is shown in

2.5(c).

These three elemental image-template operations can be

used to define other operations between images and templates

such as circle-minimum and square-minimum.

Template-Template Operations. There are six elemental

binary operations between two templates called template-

template operations: addition, multiplication, maximum,

circle-plus, circle-maximum, and square-maximum. These

operations are similar to their image-image and image-template

counterparts; the major difference is the region over which

the operations are defined. Addition and maximum operations

are defined over the union of the two template configurations,

but multiplication is defined only over the intersection of

2-10



3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 2 2 1 1 1 1 1 1

3 3 3 3 3 3 3 2 2 2 1 1 2 1 1 1

3 3 3 3 3- 3 2 2 2 2 1 2 2 1 1 1

3 3 3 2 2 2 2 2 2 2 1 2 2 1 1 1

3 3 3 3 3 3 3 2 2 2 1 1 2 1 1 i

3 3 3 3 3 3 3 3 2 2 1 1 1 1 1 1

33 3 3 3 3 3 3 3 12 1 1 1 11

3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1
(a)

07

(b)

3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 2 2 1 2 1 1 1

3 3 3 3 3 3 3 3 2 2 2 2 2 2 i 1

3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1

3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1

3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1

3 3 3 3 3 3 3 3 2 2 2 2 2 W 1 1

3 3 3 3 3 3 3 3 3 2 2 1 2 1 1 1

3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1
(c)

Figure 2.5: Example of Gray Level Dilation
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I.!
11 2 1*3*1 4 11 Is.I1 1

template S

F2 *3*4

12 13 14 15 16

template R 22 23 *24* 25 26 2

32 33 34 35 36

template T

Figure 2.6: Template Configuration Resulting from
T = R(+)S, R(v)S, or R[v]S

the two templates. Circle-plus, circle-maximum, and square-

maximum operations are defined over the configuration formed by

the union of the pixels of one template centered over all of

the pixels of the other template (1:30). For example, Figure

2.6 shows a Von Neumann template, R, with its center defined as

r(3), and a horizontal template, S, with its center defined as

s(3). The template resulting from the circle-plus, circle-

maximum, and square-maximum operations is shown as template T

with center t(24). Template T is formed by the union of the

configurations constructed by overlaying the center pixel of

template R on each pixel of template S: T(x) = R(O) U S(y). In

this example, the pixels at t(21), t(12), t(22), t(32), and

t(23) are the result of pixels r(1) through r(5) when template

R is centered at pixel s(1).

The computation of the resultant weights in template T

under the operations of addition, multiplication, and maximum

2-12
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is simple. Since template addition and maximization are ,_

performed over the union of the two templates, the resulting

template is the addition or maximum of pixels from each

template with the same configuration coordinates. Template

multiplication is performed over the intersection of the two

templates: each resulting pixel is the product of a pixel from

each template with the same configuration coordinates (1:25).

Recall that template pixels outside the configuration have

weights of zero.

The computation of template T resulting from the circle-

plus, circle-maximum, and square-maximum operations between A

templates R and S is more difficult. Conceptually, template T

is the result of two operations between the operand templates R

and S. First, the template T configuration is computed from

the union of template R centered over each cell of template S,

as discussed above. Second, the weight of each cell in the o

configuration of template T is computed. For convenience,

designate each cell of templates R, S, and T as R(ri,rj),

S(si,sj), and T(ti,tj) respectively, where (ri,rj), (si,sj),
02*

and (ti,tj) denote the cell's offset from the center of the -

template. The center is designated R(0,0), S(0,0), and T(0,0). -

Thus, the weight of each cell in T can be computed as follows

for each elemental operation:

% .

2-13

* ... ~ % **%* * 0~ *.* *~--.* .. .. -- .. .- - .. 0at



(1) circle-plus: T(ti,tj) = E [R(ri,rj)*S(si,sj)] where

(ti,tj) = (ri+si,rj+sj) and R(0,0) is centered over

S(sisj)

d (2) circle-maximum: T(ti,tj) : max[R(ri,rj)*S(si,sj)]

where (ti,tj) = (ri+si,rj+sj) and R(0,0) is centered over

S(sisj)

(3) square-maximum: T(ti,tj) = max[R(ri,rj)+S(si,sj)]

where (ti,tj) = (ri+si,rj+sj) and R(0,0) is centered over

S(sisj)

A more rigorous mathematical description of these operations

can be found in the image Algebra Tutorial (1:30).

These six elemental template operations can be used to

define other operations between templates such as subtraction,

division, minimum, circle-minimum, and square-minimum (1:25).

Algorithm Optimization

Although the convlution operations between two templates

are complicated and appear useless in real image processing

algorithms, they form a very important part of the IA. These

convolution operators are important for the composition and

decomposition of templates which provide tools for program

optimization. (1:39)

The decomposition of templates can be used to break a

large template into an equivalent set of smaller templates

which yield a decrease in the computation of an expression.

For example, the circle-plus operation can be used to calculate
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the local average gray level in an image (dimension 256x256)

, /. with a template (dimension 3x3) through C = A + R. If template

R is decomposed into two smaller templates, S (dimension 3xl)

and T (dimension 1x3), then the average image can be calculated

by C = A B R = A + (S 4D T) = (A b S) b T. This equation shows

a number of methods for calculating the average, each one with

a very different computational load. Since each pixel in C =

A + R requires the summation of nine products, the entire

operation needs 589,824 multiplications and 524,288 additions.

However, since each pixel in C = (A + S) 4o T requires the

summation of three products for each circle-plus operation,

this entire operation requires 393,216 multiplications and

262,144 additions. Thus, the second formulation needs 30

percent fewer multiplications and 50 percent fewer additions:

(9 template decomposition can provide algorithm optimization.

.2-5
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The Genmaea gmalento of the imge Algebra oeti

standardization of the image processing development tools used

by many different companies and agencies around the country.

Because each organization has a lot of money invested in its

own image processing tools, the only viable way of obtaining

standardization is by convincing each group that the image

algebra is an efficient and powerful development tool.

The image algebra developed by the University of Florida,

and briefly presented in Section II of this report, provides a

strong foundation for an image processing environment that

could become a standard. The mathematical structu'-e and small

number of elemental operators allow a user to model any image,

perform any gray level transformation, and optimize algorit!-'s

through identities without forcing the user through a long

learning process. Additionally, the notation provides an

understanding of the basic operations involved in any image

processing algorithm described with the image algebra.

ILn essence, the University of Florida has achieved the

first six goals of a desirable image algebra outlined by the

Air Force and discussed in Section I. They have succeeded in

developing an image algebra that is both powerful and concise.

But, if the image algebra is to become a desirable development

tool, its implementation must retain this power and brevity as .
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well as promote a complete image processing environment. The

implementation of the image algebra is as important to its

acceptability as its mathematical structure and power. Thus,

what attributes must the image algebra implementation possess

in order to become a useful and desirable image processing

development tool?P

Image Algebra Notation

The implementation of the image algebra notation should

be concise and flexible. Increases in th,! production of image

processing algorithms can be realized through a notation that

allows programmers to represent complicated operations with

single character operators. In addition, the notation must

allow a programmer the flexibility to manipulate the image

algebra operators as if they were ordinary algebraic operators

in a computer program.

The image algebra notation must provide access to the

program statements supported by many high level languages.

Prugram statements are those structures that provide program

control during execution of the routine. They include 14.

assignment (A=B), conditional branching (if-then-else), and

repetitive looping (for-do, while-do) statements. Because

each rcomputer language supports and implements these program

structures differently, the image algebra notation must 1

support program statements suitable for translation to any

computer language. .

3-2
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The implementation should support arbitrary names for

~ image, template, and scalar operands, and program variables.

Operand and variable names should not be limited to certain

lengths or certain letters of the alphabet.

The notation must support all of the elemental operations

of the image algebra, and the computer representation of each

operator should closely resemble its written representation.

A user should be able to enter an image processing algorithm

into a computer exactly as it is written on paper.

Computer and Language Independence

One of the objectives of a standardized image algebra

processing environment is the ability to transfer image

processing algorithms from one computer system to another

without (ideally) modification. The purpose of this goal is

to provide users of the image algebra with the ability to

share image processing routines without forcing everyone to

enter each algorithm by hand. The preferred method would be

tape transfers between computer sites. This goal requires

1~. that the image algebra environment be machine and language

independent.

There are three basic approaches for making the image

algebra both machine and language independent. First, require

every user of the image algebra to employ identical computer

hardware and software. Second, implement the image algebra in

a high level language. Third, design a high level language,

S 3-3
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based upon the image algebra notation, that can be translated

to any computer system. Because the ultimate goal of the

image algebra project is standardization of the entire image

processing community, the third method is the most logical

approach.

The first two approaches present problems to wholesale

acceptance of the image algebra. Foremost, it is unlikely

that any organization would significantly modify its large

investment in computer resources to accommodate a new program.

High level languages approach independence, but no high level

language is completely machine independent. Further, a choice

of one language or another will present compatibility problems

to one group or another because they do not use that specific

language.

The key to general acceptance of the image algebra is an

environment that can interface the image algebra description

of an algorithm to the present computer resources of each

organization. This interface would allow the sharing of image

processing routines by translating image algebra descriptions

into a language supported by that organization's computer

system. Subsequent compilation of the translated routine

would allow its execution on the host computer without

modification.

The real benefit of this design is derived through the

flexibility of tailoring the image algebra operations to each
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organization's computer system while retaining machine and

language independence through the interface. This allows each %'

organization to optimize the IA operations while maintaining

complete IA language compatibility. I

Image Algebra Preprocessor

The interface is provided by a preprocessor that

translates image algebra expressions into equivalent blocks of

code in FORTRAN, PASCAL, ADA, or some other language. The

translated code is subsequently compiled and linked with

libraries of image algebra operations into executable modules.

The requirements for implementing the image algebra with -

this type of interface are minimal. Each organization needs

both a high level language description of the image algebra

operations and a preprocessor. Each organization tailors the-

description of the image algebra operations to their specific

computer system and then places them into the computer's

libraries. Once the preprocessor and operators are installed,

the computer can be programmed to automatically translate,

compile, and link each routine into an executable module.

This design requires the image algebra preprocessor to

be flexible. The preprocessor must be capable of translating

image- algebra expressions and other program statements into

equivalent code in several different languages. This does not

imply that every preprocessor must be capable of translating

image algebra notation into more than one language. Each '
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computer system will employ a preprocessor that translates the

image algebra expressions and program statements into the high

level language(s) supported by that computer.

It is anticipated that image processing algorithms will

possess statements containing multiple operations per line. A

scalar algebraic equation like c =a * b - (c + d)/e has an

* equivalent representation in the image algebra as C =A * B -

(C + D)/E. Rather than forcing the image processing engineer

to write this equation as a series of statements with one

* operation per line, it would be desirable to enter the entire

* equation on one line. Consequently, the preprocessor should

be able to translate multiple image algebra expressions per

line.

There are a number of ways to implement the image algebra

preprocessor. One method is a preprocessor that translates

each IA expression into the equivalent source code of a high

level language by directly substituting blocks of code for

each IA expression. This method allows each program module to

be self-contained (free from external procedures) but each

program module may contain redundant blocks of code. This

method creates modules that are likely to be larger than

necessary, but they may execute more rapidly because they

avoid the inherent overhead of procedure calls.I

Another method, the one implemented in this project, isa

preprocessor that translates each IA expression into a series
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of equivalent high level language procedure calls. Although

each program module must be linked with the library of image

algebra operations, it is a self-contained executable module

that prevents redundant blocks of code. This method creates

modules that are relatively compact but they execute more

slowly because they rely almost entirely upon procedure calls.

The major advantages of this technique are the simple design

of the preprocessor and the standard interface between the

The operation of the preprocessor implemented at AFIT in

this project is demonstrated by Figures 3.1 and 3.2. Figure

3.1 shows an IA source file containing a number of operations.

The preprocessor translates the IA expressions into a series

of PASCAL procedure calls as shown in Figure 3.2. At this

point, it is not necessary for the reader to understand all of

the notation contained in these two figures. That will be

explained in the next section.

3"
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Image_and Template Operations

(* This is the program comment section. Each line is -
(* marked with the PASCAL comment delimiters at the ends. *
(* The program comment section in the IA file is not *
(* passed to the PASCAL source file. -
(S The following lines contain the other IA program ) '.
(* sections. The program code section includes two -
(5 template definitions. 5)

(5 constant declaration section U
const MaxLoop = 3
(5 type declaration section 5) 1

type itype = integer
ttype = integer

(5 variable declaration section 5)

var R,S,T template
A,B,C : image
j : integer

(* program code section 5)

begin
(5 define templates S and T 5)

invariant template S
begin
S(x,y) = 4
S(xy+l) = 5
end
invariant template T
begin
T(x,y-1) = 1
T(x,y) = 2
T(x+ly) = 3
end

R := S (+) T
GetImage (A,'')
for j := 1 to MaxLoop do
(* loop the statements delimited by "begin" and "end" *)
begin
B:= A>:j
C :: (C + B) [v] R
end

PutImage (C,'')
end.

Figure 3.1: Samplz Image Algebra File
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(inherit('iiaoper.env , 'iio.env' )J
program image_and_template operations (input,output);

~y.const maxloop =3;
var r,s,t template;

a,b,c image;
j : integer;

* begin
reset (input);
rewrite (output);
s-fig(.1.).r:=O0; s.fjg(.1.).c: 0; s.fig(.1.).w:=4;
s.fig( .2.) .r:= 0; s.fig( .2.) .c:=+1; s.fig( .2.) .w:=5;
s.num :=2;
t'i ( 1 ) r = 0 Ui ( 1. . : - ; t f g . . . : I

t.fig(.2.).r:=O0; t.fig(.1.).c:=-0; t-fig(.1.).w:=2;

t.fig(.3.).r:=+1; t.fig(.3.).c:= 0; t.fig(.3.).w:=3;
t.num :=3;
(***** r:=s(+)t ***

TempCirclePlus (s,t,tRl);
r :=tR1;
getimage (a,'');
for j :=1 to maxloop do
begin

(***** b:=a>=j 2**
maxval :=MaxVallmage (a);
CharImage (a,j,maxval,iRl);
b := iRi;

(~**c:=(c+b)[vlr ***
ImageAdd (c,b,iRl);
ImageTempSquarelax (iRi ,r, iR2 );
c := iR2;
end;

putimage (c,'');
end.

Figure 3.2: PASCAL Source Code After Preprocessing the
Sample Program of Figure 3.1
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IV. AFIT Implementation of the Image Algebra

The image algebra, as conceived by the University of

Florida, can be the basis for a powerful image processing

development environment. It has the capabilities to perform

any gray level image transformation, and its notational and

operational simplicity are surprising. This image algebra has

the potential to become a widely accepted image processing

tool.

As discussed in Section III, the most critical component

of the image algebra will be its computer implementation,

especially the user interface. If the image algebra is to

gain wide spread acceptance, it must have a user interface

that is both simple and capable of utilizing the full power of

S the image algebra.

This section discusses the design and implementation of

the image algebra at AFIT. The goal is an image processing

development tool with a simple user interface that allows full

access to the power of the image algebra. This implementation

is intended to achieve three of the desirable properties of a

useful image algebra outlined in Section I: (1) substitution

of concise image algebra expressions for large blocks of

program code, (2) notation that allows the use of libraries of

image transformations, and (3) machine and computer language

independence.

4-1
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Development Environment and File Structure

Before discussing the explicit design of the AFIT image

algebra, it is helpful if the reader understands the overall

AFITIA structure and how it is incorporated into the VAX

11/780 processing environment using VAX PASCAL.

The major components of the AFITIA development tool are

derived from five PASCAL source code files: (1) two image

algebra operations files named iIAOPER.PAS and rIAOPER.PAS,

(2) two input/output operations files named iIO.PAS and

rIO.PAS, and (3) the preprocessor file named PREPROC.PAS.

The first two files contain the source code for all of the

operand type declarations and operations implemented in the

AFIT image algebra with integer and real operands. The second

two files contain the source code for all of the input/output

operations with integer and real operands. Two files each for

the IA operations and input/output routines are required

because of the strong data typing used in PASCAL: some IA

operations can not be programmed in PASCAL to manipulate both

real and integer operands. Therefore, a PASCAL implementation

of the IA requires a set of IA operations each for real and

integer operands. The "i" and "r" preceding the IA operation

and input/output file names above denote the type of operands,

integer or real, used in that file's procedures. A copy of

the source code for the AFITIA operations with real operands

is in Appendix A, and a copy of the source code for the AFIT

--.
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input/output operations with real operands is in Appendix C.

The fifth PASCAL file contains the AFITIA preprocessor used

for translating image Llgebra expressions into a series of

PASCAL procedure and function calls. A copy of the source

code for the AFITIA preprocessor is contained in Appendix B.

Before any translation of image algebra expressions can

be accomplished on the VAX 11/780, the development environment

muzt possess eight files d'-rived from the above source code

files. The first two are the object code descriptions of the

image algebra operations, iIAOPER.OBJ and rIAOPER.OBJ, created

by compiling iIAOPER.PAS and rIAOPER.PAS, respectively. The

next two are the object code descriptions of the input/output

operations, iIO.OBJ and rIO.OBJ, created by compiling iIO.PAS

and rIO.PAS, respectively.

The other four files, iIAOPER.ENV, rIAOPER.ENV, iIO.ENV,

and rIO.ENV, contain the procedure declarations from the image

algebra operation and input/output files. These files are

required to ensure proper compilation of a translated IA file

because PASCAL requires that all procedures and functions be

declared to the compiler before they are used. This method

permits VAX PASCAL to separately compile and link IA source

files, IA operation files, and input/output files. Like the

object code files, these files are created during compilation

of the PASCAL source code files by using the "environment"

compiler attribute in VAX PASCAL.

4-3
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These eight files plus an executable version of the

preprocessor are all that is necessary to translate an image

algebra description of any image processing algorithm into an

executable module. The AFITIA development tool uses a command

file called TIA.COM to automate this translation process. A

copy of this command file is in Appendix D. Figure 4.1 shows

a block diagram of the entire AFITIA development tool, the

interrelationship between all of the files used to build an

executable image processing module, and the flow of execution

in the automatic translator command file. The execution of

this command file is outlined below. V

Starting at the top, the file containing the image

algebra language description, the IA file, is copied to an .

intermediate working file named TRANSLAT.IA. The name of the '

file may be any valid filename, and it is assumed to have a

".IA" extension.

Next, the preprocessor is invoked to translate the IA

expressions in this working file into PASCAL source code.

First, the entire TRANSLAT.IA file is converted to lower case

letters, all comments are removed, and the result is placed in

TRANSLAT.TMP. Second, the preprocessor examines TRANSLAT.TMP

and determines which type of the image and template operands,

integer or real, are used in this routine. The default data

type is real. Based upon this determination, the preprocessor

writes a statement to another working file, TRANSLAT.PAS, that .
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IA file: name. IA

copy to

TRANSLAT.IA I

PREPROCESSOR%
convert to lower caseI%
F TRANSLAT.TMP I

translate JA to PASCAL

i10. ENV 1iIAOPER.ENV
> rIO.ENV j TRANSLAT.PAS rIAOPER.ENV (

compile compile compile

input/output image algebra
operations TRANSLAT.OBJ operations
(source code) (source code)

iIO.PAS iIAOPER.PAS
rIO.PAS rIAOPER.PAS

compile compile

iIO.OBJ iIAOPER.OBJ
L> rIO.OBJ > link < rIAOPER.OBJ <-

TRANSLAT.EXE

rename to

executable module: name.EXE a

Figure 4.1: AFITIA Development Environment and File Structure
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allows the inclusion of the proper environment files, iIO.ENV "

or rIO.ENV, and iIAOPER.ENV or rIAOPER.ENV, for compilation.

Finally, the preprocessor continues examining TRANSLAT.TMP,

translates each line of the file containing IA expressions,

and outputs the translated code to TRANSLAT.PAS.

Once the entire algorithm is translated, the PASCAL

compiler is invoked to operate on the TRANSLAT.PAS file, and

the compiled (object) code is returned in TRANSLAT.OBJ. The

object file is subsequently linked with the proper image

algebra operation and input/output object files resulting in

an executable file named TRANSLAT.EXE. This executable file

is then renamed to the file name of the original IA file with

a ".EXE" extension, and all of the TRANSLAT.*** files are

deleted from the directory.

After the executable file is automatically built by the

process described above, the algorithm may be run from the

computer's command line.

AFIT Image Algebra Language

One of the goals of both the UFIA and this project was

the concise expression of image processing algorithms. Given

the profusion of image processing algorithms with controlled

execution, differing data structures, and diverse operations,

this is a formidable task. However, the AFITIA language is

designed to overcome these obstacles. First, the AFITIA

notation supports the controlled execution of IA expressions.
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Second, the AFITIA operands are flexible enough to accommodate

many different image and neighborhood configurations. Third,

the AFITIA can perform any image transformation because its

basic operations are identical to those of the UFIA. Recall

that the University of Florida proved this set of operations

was capable of performing any image-to-image transformation

when used in conjunction with controlled program execution.

The following sections discuss each of these aspects of the

AFITIA language in more detail.

Program Control. The UFIA elemental operations described

in Section II can serve as the basis for an IA language, but . '

these operations alone cannot form a complete IA language

capable of describing all transformations. Many image

processing algorithms require additional program statements, '-

such as conditional branching and repetitive looping, to

control the execution of an algorithm. Consequently, a

complete image algebra language must support both the

operations defined in the UFIA and the programming statements

found in the more popular high level computer languages.

Since the image algebra will be used with many different

computer languages, ti.e image algebra language must define and f_

support program control statements that can be translated into ""1

any computer language. Designing a language to be independent

of the target language of the preprocessor will be necessary

because different computer languages support different control

4.
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statements. For example, PASCAL supports "if-then-else" and

"case" conditional statements and "for", "while" and "repeat"

*repetitive statements; FORTRAN has "if-then-else", "do", and

"do-while" statements; the C language supports "if-then-else",

"while", "for", "do-while", and "switch" statements; and PL/I

has "if-then-else", "select", "do", "while", and "until"

control statements. (3:57-61; 7:9-3,9-9,9-12; 8:67-85,151-174;

9:88-101,103-127) Although there is a common set of control

statements, there are differences that make it difficult to

implement a universal notation.

Therefore, this project did not attempt to design generic

control statements that could be translated to equivalent

statements in any high level computer language. Instead, the

AFITIA language retains the PASCAL constructs in order to form

an image algebra language that supports repetitive looping and

conditional branching. Consequently, this implementation of

the image algebra language is ,ot completely machine or

language independent, but it does progress in that direction.

Operand Data Structures and Notation. The operands of

the AFITIA must be capable of modeling and transforming any

practical image. Consequently, the data structures of the

operands must be flexible enough to handle many different

image formats and neighborhood configurations.

In the UFIA, the number of images and templates, and

their respective dimensions, are limitless. Unfortunately, an
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implementation of the image algebra on a computer requires

some compromises. Implementing the image algebra on the AFIT

computer requires that the dimensions of the UFIA operands be

restricted because of limited computer resources. The size of

the operands supported by the AFITIA should be sufficient for

most image processing tasks.

In this version of the AFITIA, images are limited to

two-dimensional arrays, and the number of images available to

the user is software limited to 100. Two-dimensional arrays

are used to minimize the memory and program requirements.

Images may be named with any combination of characters (except

v), numerals, and underscores up to eighty characters long. A

software switch, iType, included in the IA source file can be

used to implement the images with real or integer gray values.

The default switch setting is real. Complex valued images are

not supported in this version of the AFITIA. Each dimension

of the image may be any size up to a maximum value set by the

user with two other software switches found in the IAOPER.PAS

files, MaxlmageRow and MaxImageColumn.

The data structure of the image operand is a record with

three fields: row dimension, column dimension, and an array of

integer gray levels indexed by row and column position. This

data structure allows the AFITIA to manipulate multiple,

arbitrarily sized images. Additionally, since the dimensions

of the image can be initialized by a procedure that reads in

I,% E
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the input image, the user is freed from tracking all of the

INY image dimensions during execution.

The image notation used in this project and by the

University of Florida is similar. Images are denoted with

capital letters from the beginning of the alphabet such as A,

B, and C. Arbitrary pixels in an image are represented with

the vector notation k, and the gray value at an arbitrary

pixel in image A is denoted by A(k). Specific pixels in the

two-dimensional AFITIA images are denoted with row and column

qualifiers to the image letter designator such as A(2,3) or

B(7,4).

In this version of the AFITIA, one-dimensional arrays are

used for storing template configurations and weights. One-

dimensional arrays were chosen for the template operands in

order to simultaneously increase configuration flexibility and

minimize computer storage requirements. Like image operands,

templates may be named with any combination of letters (except

v), numerals, and underscores up to eighty characters in

length. A software switch, tType, included in the IA source

file can be used to implement the templates with real or

integer weights. The default switch setting is real. Complex

valued templates are not supported in this version of the

AFITIA. The size of the templates is presently limited by

another software switch, MaxTempCell, in the IAOPER.PAS file
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to 100 pixels in each configuration. All pixels not within

A' the configuration are defined to have a value of zero.

The data structure of the template operand is a record

with two fields. The first field contains the number of

pixels in the configuration. The second field is an array

with each array cell representing a pixel in the template

configuration. Each array cell contains a record with three

fields of information about that pixel: the (1) row and (2)

column offset from that template's center pixel, and (3) the

weight of that pixel. This data structure permits arbitrary

row and column offsets for each pixel and, therefore, allows

arbitrary template configurations to be implemented while

minimizing the computer storage requirements.

The template notation used in this project and by the

University of Florida is similar. Templates are denoted with

caia etr rmteend of the alphabet such as R, S, and R

T. Arbitrary pixels in a template are represented with the

vector notation z where z stands for the i-dimensional offset

from the template's center pixel. (Recall that the center

pixel is not necessarily the physical center of the template's

configuration.) The weight at an arbitrary pixel in template

R is denoted by R(z). Specific pixels in AFITIA template

configurations are represented by row and column offsets from

the template's center pixel. For example, R(-2,3) is a pixel

two rows above and three columns to the right of the center
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pixel, and the center pixel of template S may be represented

by S(0,0) or S(0).

Operator Implementation and Notation. The five elemental

image-image operations, three elemental image-template

operations, and six elemental template-template operations of

the UFIA are preserved in the AFITIA. Each operation is

implemented as a PASCAL procedure or function. Each basic

operation is performed by calling the appropriate subroutine,

passing the necessary operands, and obtaining the result

returned from the subroutine. The source code for all of the

AFITIA operations is in Appendix A.

This implementation of the operators directly supports

the concise notation feature described above. The lar.-e

blocks of code needed to program each operation are replaced

.1~ by a short subroutine call.

The interface between the program calling the procedure

and the procedure itself is designed to provide maximum

program flexibility while ensuring data and variable

integrity. Using the parameter passing schemes provided by

PASCAL, each procedure obtains its operands through value

parameters and the results are returned to the calling program

through variable parameters. Local variables are used in each

* procedure to prevent the procedures from modifying any

variables not within their scope. This scheme allows each

procedure to perform its operation without modifying the data

4-12
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in either operand, and it allows the result to be returned to

an arbitrary variable name in the calling program.

As noted above, the AFITIA is comprised of a collection

of PASCAL procedures and functions that allow the substitution

of short subroutine calls for the computer code of each

elemental operation. This attribute partially supports the

sixth image algebra guideline outlined in Section I. However,

requiring a user to write image processing algorithms as a

collection of procedure calls is not compatible with the goal

of writing algorithms using the image algebra notation.

Writing computer programs in the image algebra notation

requires a mapping of image algebra operator symbols to ASCII

characters. Because many of the operator symbols in the image

algebra cannot be represented by a single ASCII character, the

AFITIA uses short strings of characters that closely resemble

the image algebra notation. Figure 4.2 displays all of the

operators, their UFIA notation, and their equivalent AFITIA

notation. In the figure, A, B, and C are defined as images,

R, S, and T are defined as templates, and f is defined as a

scalar. Notice the desirable similarity between the operator

symbols of the UFIA and AFITIA. This scheme avoids memorizing

a mapping between image algebra operator symbols and ASCII

characters. Additionally, this should ease the learning

necessary to write computer programs using the image algebra.

4-13
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Image-Image Operations% operation UFIA notation AFITIA notation
addition C A + B C A + B
subtraction C = A - B C = A - B
multiplication C A * B C = A * B
division C = A / B C A / B
maximum C = A v B C A v B
minimum C = A A B C = A - B
exponential C = A **B C = A **B
dot product f = A - B f = A B

Image-Template Operations
operation UFIA notation AFITIA notation

circle-plus C = A + R C A (+) R
circle-maximum C = A &i R C : A (v) R
circle-minimum C = A & R C : A (^) R
square-maximum C = A 5 R C A [v] R
square-minimum C = A 29 R C = A [-] R

Template-Template Operations
operation UFIA notation AFITIA notation

addition T = R + S T = R + S
subtraction T = R - S T R - S
multiplication T = R * S T = R * S
division T = R / S T = R / S
maximum T = R vS T = R v S
minimum T = R A S T R S
circle-plus T = R ) S T = R (+) S
circle-maximum T = R & S T = R (v) S
circle-minimum T = R @ S T R (-) S
square-maximum T = R S T = R [v] S
square-minimum T = R eq S T R [K] S

Other Operations
operation UFIA notation AFITIA notation

assignment A = B A B
R S R: S

characteristic A= B A = B
images A > B A > B

(image-image) A B A >= B
A<B A< B
A B A <= B

A B A(>B
characteristic A f A = f

images A > f A > f
(image-scalar) A : f A >= f

A<f A< f
A : f A <= f
A; f A <>f

absolute value :A: :A:

Figure 4.2: AFIT Image Algebra Operator Syntax
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AFIT Image Algebra Preprocessor

* If the image algebra notation is to be used for writing

computer programs, then an interface between the image algebra

language and the host computer language must be provided.

This interface must be capable of translating image algebra

operands and operator symbols into the more popular high level

computer languages.

Consequently, the final component of the AFIT image

algebra environment is a preprocessor that translates image

algebra expressions into to a sequence of PASCAL procedure

calls required to execute the algorithm. This preprocessor

allows a user to write an image processing algorithm entirely

with image algebra operands, operators, and common programming

constructs, and with little knowledge of computer programming

syntax. The source code for the AFITIA preprocessor is in

Appendix B.

The AFITIA preprocessor is designed to translate any

unambiguous image algebra expression, using the notation shown

4, in Figure 4.2, into an equivalent sequence of PASCAL procedure

calls. This preprocessor also supports any of the PASCAL

programming constructs such as assignment, branching, and

repetitive looping. The development of an image processing

algorithm using the AFIT image algebra notation with the AFIT

preprocessor requires the user to follow a few guidelines when

writing the program.
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AFIT Image Algebra Syntax

The AFITIA preprocessor expects the image algebra file to%

be comprised of up to six basic sections: (1) program name,

(2) program comment, (3) constant declaration, (4) type J

declaration, (5) variable declaration, and (6) program code.

Each section is delimited by a keyword or symbol, but all

sections need not be present to form a working algorithm.

Only the sections necessary for proper compilation are

required. Additionally, the order of the sections in the

image algebra file is very flexible. The only requirements

are that the program name, if it is included, must be first

section and the program code must be last section. Any

comments embedded in the IA file are ignored. Figure 4.3 shows

an IA program with all six sections included.

Program Name. An image algebra program may be named in

the IA source file, but it is not required. The preprocessor

interprets the first non-blank line of the file as '.he program

name unless the first line contains a comment delimiter or a

word reserved to head any of the major file sections. In the

latter ca3e, the program is assumed to be unnamed.

Program Comment. The comment section is an optional

section for all of the comments the user desires to imbed in

the IA file about the program's operands, execution, input,

and output. Each comment line is delimited by "(*" on the

left end and *'on the right end. The length and content of

4-16
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Image_andTemplateOperations

.>*. (* This is the program comment section. Each line is
(* marked with the PASCAL comment delimiters at the ends. *)
(* The program comment section in the IA file is not
(S passed to the PASCAL source file. *
(* The following lines contain the other IA program )
(* sections. The program code section includes two *)
(* template definitions. *)

(* constant definition section U
const MaxLoop = 3

(* type definition section 5)

type itype = integer
ttype = integer

(* variable declaration section U
var R,S,T : template

A,B,C : image
j : integer

(* program code section *)
begin
(* define templates S and T )
invariant template S
begin
S(x,y) = 4
S(x,y+l) = 5
end
invariant template T
begin
T(x,y-1) = 1
T(x,y) = 2
T(x+l,y) = 3
end

R := S (+) T
GetImage (A,'')
for j := 1 to MaxLoop do

,* (* loop the statements delimited by "begin" and "end" 5)

begin
B := A>=j
C :( (C + B) (v] R
end

PutImage (C,'')
end.

Figure 4.3: Sample Image Algebra File

4-17
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the program comment section is arbitrary because the AFIT

preprocessor ignores all of the comments in the IA file. This .

implies that comments may be placed anywhere in the IA file.

The comment section is terminated when the preprocessor finds

any of the reserved words used to head another section of the

IA file.

Constant Declaration. The constant declaration section

is used to declare and equate identifiers with constant

values. This optional section is reserved for initializing

user-defined constants to be used in the program. The entire

section is headed by the reserved word "const", followed by a

list of constants assigned to identifiers. Each constant is

assigned to an identifier or value with an equal sign. This
Ile

is shown in the constant declaration section of Figure 4.3.

Note the reserved word "const" is required only in the first

line of the section. The constant declaration section is

concluded when the preprocessor encounters a reserved word

used to head one of the other IA file sections.

Type Declaration. The type declaration section is an

optional part of the image algebra file which is used to

declare user-defined data types. The syntax of the type

declaration section is identical to that of the constant

declaration section except the reserved word "type" is used in

place of "const". See Figure 4.3 for an example. The

software switches, iType and tType, are placed here to define

4-18
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the data type of the image gray levels and template weights,

respectively. The default type is real. The type declaration

section is terminated when the preprocessor finds a reserved

word used to head one of the other IA file sections.

Variable Declaration. The variable declaration section

is a required part of the image algebra file. All variable

operands used in the program, such as images, templates, and

scalars, must be declared (identified) to the compiler in this -

section. The variable declaration section is headed by the

reserved word "var" on the first line followed by one or more

lines listing one or more variables separated by commas. Each U

line of variables is terminated with a colon and a data type.

The data types may be either user defined types from the type

declaration section, types defined by the image algebra such

as image or template, or they may be standard PASCAL data

types like real, integer, or character. Figure 4.3 shows some

examples of variable declarations for both IA defined and

standard PASCAL data types. The variable declaration section

is concluded when the preprocessor finds a reserved word used

to head one of the other IA file sections.

Program Code. The program code section is the last part

of the image algebra file. This is where the image algebra

operands are manipulated by the image algebra operators and

the flow of program execution is controlled. The program code

section is headed by the reserved word "begin" and terminated
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with the reserved word "end." In between these two words can

be as many image algebra and program control statements as

necessary to accomplish the image processing task.

The syntax of the image algebra expressions is relatively

straightforward. Any expression may be entered into the IA

file as it is written on paper using the AFITIA symbols shown

in Figure 4.2. Few restrictions are placed on program lines

containing image algebra expressions. Each line may contain

multiple image algebra operations. The preprocessor is set up

to interpret each line with a left-to-right hierarchy within

parentheses; that is, the order of operation is determined

from left to right within any level of parentheses. One

restriction is that all parentheses be written using the "{"

-A and "}" symbols. Examples of image algebra expressions with

multiple operations per line can be found in the sample image

algebra source file shown in Figure 4.3.

The initialization of template operands is a simple and

flexible process. A template definition is headed by the

-. reserved words "invariant template" followed on the same line

by the name of the template. The next line contains the

reserved word "begin" to denote the start of the definition.

The configuration and weights are initialized on successive

lines as pairs of row and column offsets with a weight

assigned to each offset pair. The syntax of each line is

"(r+x,c+y)=z" where x and y are integer values and z is an

4-20
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integer or real value depending upon the data type of the d

template weights. Template definitions are terminated with

the reserved word "end". Figure 4.3 shows the definition of

two templates, S and T.

Some additional syntax guidelines are carried over from

the PASCAL language. These rules affect program execution

because of the way the PASCAL compiler interprets program

control statements. Basically, PASCAL requires that each

group of logically related expressions be delimited with a

"begin" and "end" statement. Logically related expressions

are those lines of program code under the control of the same

program statement such as a loop or conditional branch. An

example of this syntax requirement can be found in the "for"U

loop at the end of Figure 4.3.VI

Program control statements may not contain image algebra

operators but they may contain explicit IA procedure calls.

The preprocessor is designed not to interpret any program

lines containing reserved words or standard identifiers from

the PASCAL language. Therefore, any image algebra operators

on the same line as a reserved PASCAL word or PASCAL standard

identifier are passed directly to the TRANSLAT.PAS file and

may result in errors when they are compiled. However, any

AFITIA procedure calls in a program control statement can be

compiled successfully.
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A list of reserved words and standard identifiers from

bth the image algebra and PASCAL languages is shown in Figure

bo4 The reserved words are primitive components of both the

image algebra and PASCAL which cannot be used as identifiers

in an IA program. On the other hand, the PASCAL standard

identifiers listed in Figure 4.4 may be redefined in an IA

program, but the predefined facility of that identifier is

then lost. (3:37-38) Image algebra standard identifiers

should be treated as reserved words.

%.~**

Image and template input/output operations are handled

through PASCAL procedure calls. The input/output routines

supported by the AFITIA are shown in Figure 4.5. Both read

operations prompt the user for the name of the file from which

to read. Both write operations write the image to a file

named by the user. If the name of the file in the procedure

call is left blank, '', the user is prompted for the file name

during execution. Appendix C contains the source code for the

AFITIA input/output procedures.

The AFITIA contains some extensions to the UFIA set of .

operators to ease the programming of algorithms in the AFIT

image algebra language. In addition to the fourteen elemental

operators outlined in Section IT, the AFITIA includes three

functions and one procedure for image operands, and four

procedures for template operands. These operations are shown

in Figure 4.5.
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VAX PASCAL Reserved Words

and array begin case
const div do downtoOl

else end external file
for forward function goto
if in label mod
nil not of or
packe-d procedure program record
repeat set then to
type until var varying
while with

VAX PASCAL Standard Identifiers

arctan boolean byte char
chr close Cos eof
eoln exp false index
input integer length ln
odd ord output pred
read readln readvar reset
rewrite round sin sqr
sqrt succ text true
trunc write writeln writevar%

Image Algebra Reserved Words and Standard Identifiers

Conf igTempHCons t ConfigTempVConst Conf igTempMooreConst
ConfigTempVNConst Constlmage dotval
GetImage GetTemplate image
ImageEqual ImageType invariant
iRl iR2 iR3
iR4 iR5 iType
MaxlmageColumn MaxlmageRow MaxTempCell
maxval MaxVallmage minval
MinVallmage PutImage PutTemp] ate
template TemplateType tRI U

tR2 tR3 tR4
tR5 tType v

Figure 4.4: Reserved Words and Standard Identifiers
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Input I Output Operations
operation AFITIA notation

read image A from the GetImage (A,'name')
external file 'name'

write image A to the PutImage (A,'name')
external file 'name'

read template R from the GetTemplate (R,'name')
external file 'name'

write template R to the PutTemplate (R,'name')
external file 'name'

Image Operations
operation AFITIA notation

is image A z image B ? ImageEqual (A,B)

minimum gray value of image A MinValImage (A)

maximum gray value of image A MaxValImage (A)

initialize image A to dimension ConstImage (A,row,col,x)
(row x col) with constant
pixel gray value of x

Template Operations
operation AFITIA notation

configure R as a horizontal ConfigTempHConst (R,col,x)
template of dimension (1 x col)
with constant pixAl weights of x

configure R as a vertical ConfigTempVConst (R,row,x)
template of dimension (row x 1)
with constant pixel weights of x

configure R as a Moore template ConfigTempMooreConst (R,
of dimension (row x col) with row,colx)
constant. pixel weights of x

configure R as a Von Neumann ConfigTempVNConst(R,rad,x)
template of radius (rad) with
constant pixel weights of x

Figure 4.5: Additional AFIT Image Algebra Operations

4-2
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Building an Executable Module ;.

Once the image processing routine is properly described

in the image algebra language, it can be transformed into an

executable module with ease by invoking the VAX command file 0,

TIA.COM followed by the name of IA file to be transformed.

This command file automatically executes the preprocessor to

translate the IA file into a PASCAL source code file, executes

the PASCAL compiler to transform the source code into an

object file, links the object file with the image algebra and

I/O routines contained in IAOPER.OBJ and IO.OBJ to produce an

executable module, and, finally, renames the executable module

with the name of the original IA file. TIA.COM is listed in

the appendix.

Figure 4.6 shows the result of preprocessing the sample

program from Figure 4.3. After compiling and linking this

source code, it becomes a self-contained executable module.

Execution of the image processing task is accomplished by

running the executable module with the VAX command "RUN

filename".

4-25?
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[inherit('iiaoper.env','iio.env')]
program image and template operations (input,output) 0%

const maxloop = 3;
var r,s,t template;

a,b,c image;
j integer;

begin
reset (input);
rewrite (output);
s-fig(.1.).r:=O0; s.fig(.1.).c:=O0; s.fig(.1.).w:=4;

s.num :=2;
t.fig(.1.).r:= 0; t.fig(.1.).c:=-l; t-fig(.1.).w:=1;
t-fig(.2.1.-:= 0; t.fig(.2.).c:=O0; t-fig(.2.).w:=2; 2
t.fig(.3.).r:=+1; t.fig(.3.).c:= 0; t.fig(.3.).w:=3;
t.num := 3;
(***** r:=s(+)t S**

TempCirclePlus (s,t,tRl);
r :=tRI;
getimage (a,'');
for j :=1 to maxloop do
begin
(***** b:=a>=j **$
maxval := ?axVallmage (a);
CharImage (a,j,maxval,iRl)
b :=iRi;

($~*c:=(c+b)[vlr ***
ImageAdd (c,b,iRl);
ImageTempSquareMax (iRl,r,iR2);
c :=iR2;
end;
put..mage (c,'');
end.

le.r

Figure 4.6: PASCAL Source Code After Preprocessing the
Sample Program of Figure 4.3
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V. Image Algebra Algorithms

To demonstrate the power of the image algebra language

and the simplicity of the AFITIA development tool, this

section develops three image processing algorithms. The first

algorithm, a mean filter, demonstrates the image algebra's

power for describing linear image processing tasks. The other

two algorithms, a median filter and a local mode filter,

exhibit the image algebra's power for representing nonlinear

image processing tasks.

A comparison of the two implementations, one in the image

algebra and one in PASCAL, of each of the following algorithms

demonstrates the tremendous potential productivity increases

by a programmer using the image algebra. Due to the concise

notation and powerful operators, an image processing engineer

can produce reliable image transformation tools with minimal

development time. Further, these comparisons highlight the

ease of writing image processing algorithms with the image

algebra language. They also indicate some areas where the

AFITIA needs improvement.

Mean Filter

The mean filter is a linear operation used for noise

suppression in images. The filter modifies each image pixel

to reflect the mean gray value within a small neighborhood of

each image pixel where the neighborhood is defined by the

5-1
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program MeanFilter (input,output);
(* Let image A be a two dimensional, integer valued array )
(* of dimensions ImageRows by Image_Columns.
(* Let filter F be a 3x3 array of constant weight = 1. *)
(* The result of the filter operation is placed in image R *)
type Image = array (.•.256,1..256.) of integer;

Template = array (.1..3,1..3.) of integer;
var A,R : Image;

F : Template;
ImageRows,ImageColumns,i,j,k,l,sum integer;

%Include '10_PAS.PAS'
begin (* program Mean Filter 5)

reset (input);
rewrite (output);
(S read image A from an external file .)

GetImage (A,'input.img',Image_Rows,ImageColumns);
(5 initialize the filter weights to 1 )
for i :1 to 3 do
for j := 1 to 3 do F(.i,j.) := 1;

(S for each pixel in image A )
for i : 1 to ImageRows do
for j := 1 to Image _Columns do begin
(* sum the gray values in the neighborhood *)
sum := 0;
for k : -I to 1 do
for 1 := -1 to 1 do
if (i+k>=l) and (i+k<=Image Rows) and

(j+l>=l) and (j+l<=Image_Columns)
then sum := sum + A(.i+k,j+l.)*F(.k+2,1+2.);

(S divide the sum by the number of neighborhood pixels *)
(* and place this value into the resulting image *)
R(.i,j.) := round (sum/9);
end; (* for j *)

(* write the resulting image to OUTPUT.IMG *)
PutImage (R,'output.img',Image_Rows,ImageColumns);
end. (* program MeanFilter *)

Figure 5.1: PASCAL Implementation of a Mean Filter

configuration of the filter. This filter has the desirable

effect of reducing image noise, but it introduces blurring at

step or ramp edges (6:330-331).

Figure 5.1 shows a PASCAL implementation of the mean

filter, including the necessary input/output operations to
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make it useful as an executable module. The algorithm for

'V 4 .'this filter is simple. Following the declaration sections,
?.

the routine reads an image from a user-specified external

file. The external file is assumed to be headed by the row

and column dimensions of the image followed by the image data 4,

arranged in a two dimensional (row x column) array. After

obtaining the input image, the program steps through each

pixel of the image. At each pixel of the image, designated by

A(i,j), all of the pixel gray values lying under the filter

configuration centered over A(i,j) are summed and divided by

the number of pixels in the filter configuration. This

quotient replaces the gray value at pixel AMi,j).

Figure 5.2 shows the mean filter algorithm described in

the ArITIA language. The operation of this algorithm is

subtle compared to the direct PASCAL implementation. The

declaration and initialization sections are similar. After -

reading the image from an external file, this algorithm

replaces each pixel gray value with the sum of pixel gray

values in the neighborhood of each image pixel. Once this

operation is completed by the circle-plus operator, a simple

scalar division is needed to complete the averaging process:

divide the image by the number of pixels in the neighborhood.

A comparison of the Figures 5.1 and 5.2 demonstrates the

advantages of the image algebra. As shown, the image algebra

routine contains 5 lines of executable (non-comment) code

5-3'
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Mean Filter
1' Let image A be a two dimensional, integer valued array ,)
(* of dimensions Image_Rows by Image_Columns. *)
(* Let filter F be a 3x3 array of constant weight 1.
(* The result of the filter operation is placed in image A 5)

type itype = integer
ttype = integer

var A image %
F template

begin LA

(* read image A from an external file *) .--=-
GetImage (A,'input.img')
(* set the filter weights to 1 *)
ConfigTempMooreConst (F,3,3,1)
(* sum the gray values in the neighborhood *)
A := A (+) F
(* divide the sum by the number of neighborhood pixels *)
(* and place this value into the resulting image *)
A := A / 9
(* write the resulting image to OUTPUT.IMG 5)
PutImage (A,'output.img')
end. ' r

Figure 5.2: Image Algebra Implementation of a Mean Filter

compared to 16 lines of code in the PASCAL routine. That is

68% less coding required to implement the same routine in the

image algebra. Further, the object code of the IA program

requires only 1.5K bytes of storage compared to the 2.5K bytes , ,e

of storage required by the object code of the direct PASCAL

implementation. Additionally, if the user desires to alter

the size of the neighborhood of each pixel, the PASCAL program

requires recoding of both the filter definition and the limits

of program iteration, but the 1A program requi-res only a

change of the dimensions used in the template definition.

Subsequent. inspection of the exec utable code size and the

execution time of these two programs shows the disadvantages
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of this version of the image algebra. The executable code

size of the IA program needs 18.5K bytes of storage compared

to only 3K bytes of storage for the PASCAL program. The

execution time on a 256x256 image is 103.41 seconds for the IA

program and 92.52 seconds for the PASCAL program.

Median Filter

The median filter is a nonlinear operation used for noise

suppression in images. The filter modifies each image pixel

to reflect the median gray value within a small neighborhood

of each image pixel where the neighborhood is defined by the

configuration of the filter. This filter reduces the noise in

an image. and it usually does not affect step or ramp edges

(6:330-331).

Figure 5.3 shows a PASCAL implementation of the median

filter with the input/output routines necessary to make the

program into an executable module. The algorithm for this

filter is straightforward. Following the declaration

sections, the routine reads an image from a user-specified

external described in the mean filter above. After obtaining

the input image, the program steps through each pixel of the

image. At each pixel of the image, designated by A(i,j), all

of the pixel gray values lying under the filter configuration

centered over A(i,j) are put into a histogram. The program

searches for the median entry in the histogram and places the

gray value at this location into the image at pixel A(i,j).

5-5
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program MedianFilter (input,output);
(5 Let image A be a two dimensional, integer valued )

(* array of dimensions Image_Rows by Image Columns.
(* Let filter F be a 3x3 array of constant weight 1 1. )

(* Let H contain the histogram of the neighborhood S)

(5 assuming a maximum of 32 gray levels (0-31). *
(S The result of the filter operation is image R. *
type Image = array (.1..256,1..256.) of integer;

Template = array (.1..3,1..3.) of integer;
var A,R : Image;

F : Template;
H : array (.0..31.) of integer: (* histogram *)
Image_Rows,ImageColumns,i,j,k,l : integer;
number,medval : integer;

%Include '10_PAS.PAS'
begin (* program Median-Filter *)
reset (input);
rewrite (output);
(* read image A from an external file *)
GetImage (A,'input.img',Image_Rows,Image_Columns);
(S set the filter weights to 1 *)
for i : to 3 do
for j : 1 1 to 3 do F(.i,j.) :: 1;

(5 for each pixel in image A )
for i :: 1 to ImageRows do
for j := 1 to Image Columns do begin
(* build a histogram of the neighborhood *)
for k =0 to 31 do H(.k.) := 0;S for k -1 to I do
for 1 : -1 to 1 do
if (i+k>=l) and (i+k<=ImageRows) and

(j+l>=l) and (j+l<=ImageColumns)
then H(.A(.i+k,j+l.).) := H(.A(.i+k,j+l.).) + 1;

(5 find the number of non-zero histogram values U
number : 0;
for k :1 1 to 31 do e
if H(.k.) <> 0 then number := number + 1;
(* the median gray value is the median entry in H S)
med val := round (number/2);
(* find and place the median gray value nto image R S)
number := 0;
for k := I to 31 do begin
if H(.k.) <> 0 then number := number + 1;
if number = med _val then R(.i,j.) := H(.k.);
end; (S for k *)

end; (5 for j 5)
(* write the resulting image to an external file *)
PutImage (R,'output.img',ImageRows,ImageColumns);
end. (* program Median Filter 5)

Figure 5.3: PASCAL Implementation of a Median Filter
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I. -

Median Filter
(* Let image A be a two dimensional, integer valued array *)
1 of dimensions Image_Rows by ImageColumns.
( Let filter F be a 3x3 array of constant weight = 1.
( The result of the filter operation is in image R. )
var il,A,B,C,R : image

F : template
x,dot : integer

begin
(* read image A from an external file )
GetImage (A,'input.img')
(S initialize F=1 *)
ConfigTempMooreConst (F,3,3,1)
(5 initialize i1ll, R:0 the same size as A 5)

ConstImage (il,A.row,A.col,1)
ConstImage (R,A. row,A.col, 0)
(5 calculate the median frequency threshold 5)

C := (ii (+) F) / 2
for x := MinVallmage (A) to MaxVallmage (A) do begin C
dot {A=x).il
if dot > 0 then begin
(* calculate the frequency of image pixels 5)

(*under template F with gray value >= x 5)

B := (A>:x) (+) F *j

(5 update the pixel gray value if frequency is 5)

(* greater than the median frequency threshold *)
R := R v {((B-C)>0)*x)
end (5 if dot then 5)

end ( for x do*)
(t write the resulting image to an external image 5)

PutImage (R,'output.img')
end.

Figure 5.4: Image Algebra Implementation of a Median Filter

Figure 5.4 shows the median filter algorithm written in

the image algebra language. This operation of this algorithm

is not as obvious as the direct PASCAL implementation. After

the usual declarations and obtaining the input image, A, this

algorithm initializes three more images of identical size to

A. Image il, which is used by the dot product operation to

count pixels, is set to one at every pixel. Image C is set to

Nil
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the median frequency threshold at each pixel. This means each

pixel in C assumes a value corresponding to the median number

of pixels within the neighborhood of that image pixel. Image

R, the result image, is initialized to zero at every pixel.

The remainder of the algorithm is iterated by gray level

from the minimum gray value to the maximum gray value in image

A. During each iteration, image B is set to the frequency of

gray levels within the neighborhood of each pixel greater than

the present gray level of the iteration. Then, each pixel

that has a frequency greater than the median frequency

threshold is updated with the present gray level of the

iteration. Thus, each pixel is updated with the a new gray

value until its frequency is greater than or equal to the

median frequency threshold.

A comparison of the Figures 5.3 and 5.4 demonstrates the

advantages of the image algebra description. As shown, the

image algebra version contains 13 lines of executable (non-

comment) code compared to 24 lines in the PASCAL version. The

result is better than 45% less programming required by the

image algebra implementation. Additionally, the object code

of the IA program requires only 2.5K bytes of storage compared

to the 3K bytes of storage required by the object code of the

direct PASCAL implementation. As in the IA implementation of

the mean filter, the alteration of the pixel neighborhood in

5-8
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the IA version of the median filter requires only a change in

the dimensions of the template definition.

Further inspection of the executable code size and the

execution time of these two programs shows the disadvantages

of this version of the image algebra. The executable code

size of the IA program requires 19K bytes of storage compared

to only 3K bytes of storage required by the PASCAL program.

The execution time on a 256x256 image is 231.36 seconds for

the IA program and 167.16 seconds for the PASCAL program.

Local Mode Filter

The local mode filter is a nonlinear operation useful for

noise suppression in images also. The filter modifies each

image pixel to reflect the most frequent (mode) gray value

within a small neighborhood of each image pixel where the

neighborhood is defined by the configuration of the filter.

This filter can remove noise from an image without introducing U'

errors in step or ramp edges. Furthermore, it is usually more

responsive to local image context than the median filter. For

example, assume the image depicted on the next page in Figure

5.5 is to be filtered and the image pixel under modification

is in the center. Without additional knowledge of the image

gray values, the logical choice for the new gray value would

be either one or seven. The local mode filter will chose one

of those values. However, the median filter will chose three,

essentially ignoring the c(ntext of the image neighborhood.

5-9
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Figure 5.5: Image for Local Mode Filter Example

Figure 5.6 shows a PASCAL implementation of the local

mode filter with the input/output routines necessary to make

the program into an executable module. The algorithm for this

filter is nearly identical to the median filter. The only%

difference is that the image pixel gray value is updated with I

the mode, rather than the median, of the histogram.

Figure 5.7 shows the same algorithm written in the image

algebra. This implementation is similar to the image algebra I

description of the median filter. After the declarations and

obtaining the input image, A, this algorithm initializes three

images to zero: B, which is used to hold the frequency of

pixels within each neighborhood at a gray level; C, which is

used to hold the maximum frequency of pixels within each

neighborhood at a gray level; and R, which is used as the

resultant image. Image C is set to the median frequency

threshold at each pixel.

The remainder of the algorithm is iterated by gray level

from the minimum gray value to the maximum gray value in image

A. During each iteration, image B is set to the frequency of

gray levels within the neighborhood of each pixelIk
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S.

program LocalMode Filter (input,output); %
( Let image A be a two dimensional, integer valued *)

* *.. (* array of dimensions ImageRows by ImageColumns. -
(5 Let filter F be a 3x3 array of constant weight 1 1. 9!
(* Let H contain the histogram of the neighborhood *)
(5 assuming a maximum of 32 gray levels (0-31). *)
(S The result of the filter operation is image R. *)
type Image = array (.1..256,1..256.) of integer;

Template = array (.1..3,1..3.) of integer;
var A,R : Image;

F Template;
H array (.0..31.) of integer: (t histogram S)
ImageRows,ImageColumns,i,j,k,l : integer;
maxval : integer;

%Include 'IOPAS.PAS'
begin (* program LocalModeFilter 5)
reset (input);
rewrite (output);
(* read image A from an external file *
GetImage (A,'input.img',ImageRows,ImageColumns);
(* set the filter weights to I 5)
for i : 1 1 to 3 do
for 1 : to 3 do F(.i,j.) : 1;
( for each pixel in image A 5)
for 1 : I to ImageRows do
for j "= I to ImageColumns do begin

(5 build a histogram of the neighborhood 5)
for k :: 0 to 31 do H(.k.) := 0;
for k : -1 to I do
for 1 : -1 to 1 do
if (i+k>=1) and (i+k<=ImageRows) and

(j+l>1l) and (j+l<:Image Columns)
then H(.A(.i+kj+l.).) := H(.A(.i+k,j+l.).) + 1;

(* find the mode of the histogram *)
max-val := H(.A(.i,j.).);
for k := I to 31 do
if H(.k.) > maxval then maxval := H(.k.);

(* find and place the mode's gray value into image R *)
for k := I to 31 do
if H(.k.) max _val then R(.i,j.) := H(.k.); -

end; (* for . 5)
(5 write the resulting image an external fileS)
PutImage (R,'output.img',ImageRows,Image _Columns);
end. (* program LocalModeFilter *)

Figure 5.6: PASCAL Implementation of a Local Mode Filter

..
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Local Mode Filter
(S Let image A be a two dimensional, integer valued *)
($ array of dimensions Image_Rows by ImageColumns. 5)
(S Let filter F be a 3x3 array of constant weight = 1. )
(* The result of the filter operation is image R. *)
var A,B,C,R : image

F : template
x,dot : integer

begin
(* read image A from an external file *)
GetImage (A,'input.img')
(* initialize the filter F=1 5)
ConfigTempMooreConst (F,3,3,1)
(* initialize B = C = R : 0 the same size as A *)
Constlmage (R,A.row,A.col,0)
B := C : R
for x MinValImage (A) to MaxVallmage (A) do begin
B (Azx) (+) R
R R v {((BvC-C)>0)*x)
C:: B v C
end (* for x 5)
(write the resulting image to an external file 5

PutImage (R,'output.img')
end.

Figure 5.7: Image Algebra Implementation
of a Local Mode Filter p

equal to the present gray level of the iteration. Then, each

pixel having a frequency greater than the present maximum

frequency of that pixel, held by C, is updated with the

present gray level of the iteration. Thus, each pixel is

updated with the a new gray value as long as its frequency is

greater than the present maximum frequency for that pixel.

The final step of each iteration updates the maximum frequency

at each pixel.

Once again, a comparison of the two implementations shows

the programming a~vantages of the image algebra. As shown,

the image algebra version contains 10 lines of executable

.,
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le

(non-comment) code compared to 20 lines in the PASCAL version.

This translates to 50% less programming required by the image

algebra implementation. Further, the object code of the IA

program needs 2K bytes of storage compared to the 3K bytes of

storage required by the object code of the direct PASCAL

implementation. Like the other two algorithms, changing the

size and conkfiguration of the neighborhood is easier with the

IA version, too.

Inspection of the executable code size and the execution

time of these two programs shows the disadvantages of this

version of the image algebra. The executable code size of the -

IA program requires 18.5K bytes of storage compared to only 3K

bytes of storage needed by the PASCAL program. The execution

time on a 256x256 image is 203.82 seconds for the IA program

0 and 132.22 seconds for the PASCAL program.

Image Algebra vs High Level Language Routines

As can be seen by the previous examples, the power and

simplicity of the image algebra is tremendous. The image

algebra provides a concise notation for algorithm development

that removes the engineer's attention to details required when

programming in PASCAL or some other high level language. This%

notation allows the image processing engineer to concentrate

on building image processing tools rather than on writing and

debugging computer programs.
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code size (Kbytes) execution time iseconds)
P
A program source object execute 16x16 64x64 256x256
S mean 1.5 2.5 3.0 2.03 7.44 92.52
C median 2.5 3.0 3.0 2.38 12.14 167.16
A mode 2.0 3.0 3.0 2.25 9.95 132.22F
L0

mean 1.0 1.5 18.5 5.85 11.63 103.41
I median 1.5 2.5 19.0 30.12 41.52 231.36
A mode 1.0 2.0 18.5 29.41 39.39 203.82

Table 5.1: Code Size and Execution Time for PASCAL and Image
Algebra Example Algorithms

Futhermore, accommodating arbitrary neighborhood sizes

and configurations is much easier to program into the image

algebra: merely alter the configuration of the templates.

Even though the IA provides increased programming

productivity for image processing routines, the size of the

executable code and slower execution times are significant

0detriments to this version of the AFITIA. Table 5.1 shows a

summary of the storage requirements and execution times for

the two versions of each image processing algorithm. The top

set of data corresponds to the PASCAL implementation of each

algorithm, and the bottom set of data corresponds to the image

algebra implementation. The table shows that both the source

code and object code sizes are smaller in the IA programs, but

the executable code size is much larger. This is due to the

linking of the entire library of IA operations to each IA

module whether or not each operation is needed.
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The execution times on 16x16, 64x64, and 256x256 binarye

'4,..

images show that the IA implementations are much slower than

the direct PASCAL implementations. The execution times of the

PASCAL implementations display the expected n' increases in

execution time where n is the image dimension. Even though

Table 5.1 does not display n' increases in execution time for

the IA programs, this does not imply that the IA algorithms

are more efficient for larger images. The increased execution

time due to the larger images is hidden by the high execution

overhead from all of the procedure and function calls. V

The AFIT image algebra operations and preprocessor should

be modified to reduce both of these problems. One method of%

reducing the code size in to program the preprocessor so that

only those basic IA operations used by the program are linked

to the object code. Reducing the execution time of the IA

programs will be more difficult due the overhead involved in

procedure and function calls.

As was shown in the previous examples, the implementation

of an image processing algorithm in the image algebra can be

very different than its direct implementation in PASCAL. The

algorithm must be formulated differently for the two languages

because of the difference in elemental operations. Because

the IA forces an image processing engineer to approach the

programming from a new and very different viewpoint, it is

difficult to determine which method is easier to implement at
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I.-..this point. However, once an engineer becomes familiar with

the IA operations, it is anticipated the IA formulation will

become easier and its implementation will be preferred.
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VI. Observations and Recommendations

The image processing environment designed and implemented

in this project is a useful and highly flexible development

tool. Through the use of a preprocessing program, it is 0

capable of translating image processing algorithms, written

with image algebra operators and PASCAL control structures, P.!-

into executable programs. The entire process can be automated

through the use of a VAX command file.

The AFIT image algebra language and preprocessor allow

the construction of image processing algorithms with minimal

development time and programming effort. The actual program

code can be reduced by 45-70%, and the low level programming

details of each algorithm are managed by the IA language and

preprocessor. The AFITIA supports real and integer valued

images and templates, and the syntax of the IA source file is

relatively simple and flexible. The AFITIA support of all

PASCAL control structures provides an IA language capable of

performing any image-to-image transformation.

One major problem with this design appeared and remains

unresolved: complete software independence. The dependencies

of the preprocessor target language have not been removed from

the AFITIA language. Since the ultimate IA language will be

translated to many different computer languages, the image

algebra language must define and support program control

6-1
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.5 statements common to the more popular high order languages.

--1 -.- Further research will provide valuable guidance about which

statements should be supported and the final form of the image

algebra language.

Some other shortcomings of this version of the AFITIA are

a lack of support for complex images and templates, the large

size of the executable code for eacn image algebra algorithm,

and their slower execution. The correction of these problems

through a more intelligent linking procedure and faster code

for the IA operations is highly recommended.

Another topic of interest stemming from this project is

the inherent parallelism of the image algebra operators.

Subsequent research could determine which operations are

amenable to parallel execution in either vector (1-D array) or

Co image (2-D array) processing architectures.

4. Overall, the blending of the image algebra developed at

• the University of Florida with the AFIT preprocessor makes

significant progress toward a simple, powerful, and universal

image processing tool.
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Appendix A: AFIT Image Algebra Operations

Cenvi ronmest( Ft noper. cmv')]

Moduloe Real j A-cOptrations;

(S Thin file contains all of the basic image and templ ate operations from x)

(2 tl~e Image Algebra developed for the AFATL, Eglina AFS, FL. The routin.-s 2)

(a ina thin file ,re wri tten for real val ued images and templates. A 2)

(s number of ARiT extensi ons are inicl uded. x)

(I global constants, types, and variables 5)

coat Mailmageltow =22; (s maxi mum i mage row di mansion X)

KaixImageCol un= 32; (2 masi mum i mage col urn di mansioan X)

lKaxTempCel I =100; (5t maxi mum number of tempi ate pixzels 5 )

NameLens so; (5 maxi mum l engthb of filIe names 2)

type I mageType =real; (s data t ype of i mage gray val ues 5)

TemplateType real; (s data type of templ ate wighsts 2)

I mage =record (2 PASCAL imaplementati on of image operand 5)

row i nteger; (Simage row dimnsi on 2)

4Cal integer; (5Imaget col urn di mension 9)

gray array (.I.. Mail magemow, . - axi mageCol un. ) of I mageType;

end;, (2 i mage record 5)
Templ ate record (Z PASCAL imaplemotation of templ ate operand 2)

nunm i nteger; (a number of pixels tw4 thina the confi gurati on 2)

cfj t array ( . 1.. MaxTvmpCellI. ) of record (s confi gurat ion a)

r integetr; (2 row offset of pixel X)

c integer; (5 col umn offset of pixel 5)

w Templatefype; ( 2 wigist of pi xel 2)

dend; (a array record *)

end; (3 template record 5)

OperStr varyi ng(3] of char;

PdamaStr vary, ng( NamLen] of char;

var iR I, i R2, i R3, i R4, i PS Imnage; (5 i nte-roedi ate i mage operands 5)

tRI, 132, t33, 34,t35 Templ ate; (S i ntermedi ate template operands 5)

dot vat mn nval ,maxval I mageType; (s i ntermedi ate scsI ar operands 5)

A - I



It .I\ (3 UNARY and BINARY IKAGE OPERATIONS I

functi on I mageEqual ( A.2 : Innngs) :bool ean;

(2 return true if A =3. pointwi5e 9)

war ipj :integer;

equal :bool earn;

begina (a function lmageEqual a)

if (A.row'3.row) and (A.Col-B.Col) then equal :ztrue else equal *false;

i : 1;

whales (equal true) and (i (= A.row) do begin

whalIe (equai true) and (j <- A.col) do begin

i f A. gray( . a, j.) (> a. gray( . th . en equal f alse;

j = j + 1.

@nd; (2 wilej 2)

i :~ a I+1;

end; (a whilet i )

1 stmage Equal e qual

end; (I function lsagoEqual X)

procedure coaxt! mmge C war A longe; row, col i nteger; valume I mg#Typo);

(11 Init1.1alI ze I nge A to a Constant Val ue: A Valu 3o11)

war a.) integer;

began a(I procedure Constlsage 3)

A. row : row- A. col :.col

for a I to row do

for j I to col do A-gray(.tj. ) :value;

end; (x procedure Comstaige 2)

function MARV&llmogo (A Ilange) I MgeType;

(11 return the aasime pizel value a the salge X)

war i,j i ateog@r

stauval I mog*Typ.;

* begia ( I3 proceduro ManVal 1 sange a)

MI Val A.. gr a y. 1, 1. ),

for a to A~ro. do

for I to A co i do
if1 A~r ,yaI ,1. ) maqua I.& t . fta I & A.gr a yt

"AMalilfnge macval,

end, (I prco e.1rv maivai tnmg.l z
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function I~aVallMgo (A : mage) :ImageType;

(a returm the mimsn pixel value an the imae. 3)

00var a.j: integer;
Z4- naval Imageype;

begs a (a procedure PS valI sage 3)

m oval : A. gray( .1, 1. ;
to r i I to A. row do

for . I to A.coi do

if A-gr&Y(.i J.) ( Ismval them naval A.gray(.i,j.);

fival mass : =a omval;

emd; ( 2 procedure PG ovaIi 1mgo i)

procedure AbemValI "go ( A : tI sge; var C I smage);

(I ibsol ut. eval ue of thbe i sge: C :A: 9)

var a, j :ainteger;

bagia (2 procedure AbiVal IMagt 2)

C. row :A. row-, C. Cal A. Cal

for a: I to A.row do

for j:= I to A.Col do C. gray(.m I .) abS (A.gfray(.i j.)

emad; (a procedure AbaVal mage 3)

procedure I egOAdd ( A. : I sage; var C I smage);

( a potamt~ wiiom age addition: C A # Cm)

ar i ,j : i t gr; 

*
bergi a (I procedure I Mg.Add 3)

if A. row i C .row them C.row A. Arow el So C. row .Crow,

if A.cOI )0 B.col them C.o1 A. al eIme C. Cal . Cal;

for a I to C.ro do

f or ja : I to C . c olw d o b e ll, m

if (a C~Arow) ad (i (z Crow) anti (j (- A.coI) and (j (I .col)

toam r.gray(.i,j.) :- A.gray(.i.a.) *mgi(aj)

of I t ) A. row) or (j A. col I them C. grayf .ia,j J a.gray( . a, J. I

if (. > I-).row) or f B. col I them C. grayc .a, j I A. grayf . .);

e; (N odureo Im g@Add NI)a

procedure Imode lubt ract (A. D IMage; var C megel;

(N pas at~a wsoiage elbt factso. C A - 2)

war, to iteger;

begia (11 procedure I mgelubtract 9)

i f Arow I. Crow themo Crow- A. row el se C.row .Crow*.

if Arol BC-l then . r 0al A. ol eIaseC rol~ a. col,

for I to C. row. do e.

for a to 'a-al do begin

af A. Crow) aid ( a Am. row) amd j a- A. Col andj B . col

I boo C. £Ta y( - a, a I A. gra y( . a j. - 1 . f ray .C a i 1

af C, > A. row) or (j aA. col S them C. gray( a .. I -0. gray( a ,J 1

af (i a C-row) or Cj a B. col t bhem C. gray( i ,j A. gray( a. J.

0 md. Ii for j do 8) 

"
Pad; It praa P4dure I maeolubt rat 8)
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Procedure I Ma0eHfIti Ply ( A.11 : limage; var c : lmgt);

(2 POi at 14 im1000ge iuti PICati On: C x A I 1 1)

var I, j : integer;
begin (S procedure ImgeKul ti ply a)

It A. row )- a. row then C. row :.A. row etlso C. rowd M. row; -F
i f A. Col - S. Col Itbom C. Cot A. Col elseo C. Cot . .Col;J

for i :I to C. row do W:
for I): to C.Col do begin

i f Ci A. row) and Ci (- A. row) and i( A. CoI and B. ('3Col

thbeaC. gray(.l P .) :A. gray( . ji.) a 3. gray(i,.

el me C. gray( . 1 .) :x 0;

end; (S for i do 3)

end; (aprocedure, I mage~ul ti pl y 3)

procedure I mageoi vi de ( A. A I mge; var C : mage);

a(P2 ait Wie a image di vision0: C A / 35)

var i~j : Integer;

begina ( 2 procedure ImageDi vide 3

if A.row )= n.row then C.row: A. row el se C. row B. nrow'A

it A.COl >= 3.Col them C.Col A. Col elseo C. Col B. .Col

for i I~ to C.row do

for . I to C.col do

if 0i( A.row) and (i := R.row) andj <- ( A.col) and

(j <= 3.Col) and (D-gray(.i 'j.) <) 0)

elme C. gray( .Ij.) 0';

end; (2 procedure ImageDi vi do 2) 7

procedure Itmagelponent (A. 3 : I male; var C : I ge);

(S poisttwise exponentiation of an image by an image: C :'ASIS exp(B21n(A)) 2

war i~j~k : integer;%

begin (2 procedure I magoElponent 2)

C. row :~A. row; C.Col A. Cot %

for 1 :1 1 to C.row do

for := I to C.col do

i f A. gray( . ,j. ) 4 >0tenC. gray( . a4.):l (b( A. gray( .i J.)

elot C.gray(.i J.): 0"

I magopful t IPIy ( C'3, C);

fo~r j I to C. row do

for j I to C.col do C.gray(.i j.) exp(C.gray(.i j.))

for i I to C.row do

for I to C. col do begi n

i f (A.gry <~ 0) and (C.gray(.i ,j. ) () 0)

heon C.Ira v(.a , I . I C. gra y( . ,j

i f A. gray(.i~ 0 then C.gray(.i,j. I 0;

end; (I for do 8) *i.

end; (S procedure lmiagv~xponent 3)
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procedure I mage~ax ( A, 8 I magt; var C :I mage);I
(C9 rtuOrnR thbe poi8tvAe go .MiMUS of i age8 A and 8: C =Z (A, CA) 3)

var 1~ iate*ter;

bogi a (3 procedure I iage~ax 3)

ifI A. row ) - .row thema C. row: A. row el se C. row: .row;

iF A. col ) B. Col theon C. Col :~A. Col elsme C. Cal 8. Cal;

for i 1 to C.row do
for I to C-col dao bgin

if C0 <z A.row) and (i C 3row) and (i <- A.col) ad <j o Scol)
then ifI A. gray(i , j.) S. *gray. ij t booC. gray( . i ) : -A. gray( .jij.)

else C~gaCi): .gray(.i,j.);
if 0C> A.row) Or (j > A.Col)

thou i f B.gray( .i,j. ) >0tbon C. gray(.i,. a. mgray( .i ,j.)

el so C. gray( . i.) :o;
if 0i > D.row) or (j > B.col)

el me C. gray( . i,j.) o ;
end; (I for .i do 3)

end; (S procedure limageMax 3)

procedure I magelem aC A, A:I ige; var C : Iimage);
( * ret urn thbe poimtwi s mninmof i mages A and 5: C m a A, 3) 8)

var i , a1Iiteger;

begi a (a procedure I ing@1g a 2)

i f A. row > B. row theon C. row: Arow el se C. row . .rate

i f A. Col > = .col theon C. col :~A.col else C.col :. .col;

for i I~ to C. row do

for j t C-Col do begin0if 0i ::=Atrow) and (I C mrow) and (j (= A.Col) and (j B .col)
then i f A. gray(C. i,J B. .gray(-i , j. thben C. gray( .i,.): A. gray( .i,.

else C.gray(.i,j.):.m.gray.m~j.);

if 0i r ow) or (J A.cOl) I
then f a. gray( . i, j. ) 0 theon C. gray( i j. ) D . gray( i , JI )

el se C. gray .i j. ): 0;

if 0i >S.row) or (j~ > B.col)

then if A.gray(.i~j.) (0 thea C.ray(.i~j.) A.gray.i,j.) J,

elsec C.gray(.I, ,.) :z ;

pnd; (3 for jdo S)

*nd; (S procedure I magei4o a )

A-5.
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procedure Charlmage ( A :Image; operator :Oper~tr; 3 Imago; var C :Imago);

(s rotors a binary Image with pizels-1 for A 5 ,,, true a)

(9 This procedure does not use image algobra primitives an order to a)

(reduce the mmrsod comutati onal rqui remaitn of the roti ae a)

begin a( rcdr2Cal"o2

C. row A. row; C.col :'A. col;

If operator - 10 thea

for a : I to A.row do

fo[ I = to A.col do

it A.gray(.i j. ) 4 3.gray(.i J.) them C.gray(.i j.) z 1

if operator ='#<- then*Im .ga( i4. -0

for i I to Arow do -

for I~ to A.col do

A. gray( .1,J. ) 4 .. gray(.l.J.) thbooC. gray( . I, j.)

else C-Cray(.i~k.) 0';

if operator ' them

for I I to A.row do 1

for I Ito A.Col doe

fA. gray( . I,j.) 8.gray( .1.4.) theoa C. gray( . Ij.) 1

*I GoC. gray( .IJ. :0;

if operator - #)- them

for I I to A.row do

for I = to A.Col do

I f A. gray( .IJ.) ). a. gray( . i, tboa C. gray( . I, J.) I

01905 C.gray(.1 J.) :=0;

if operator >' them

for I :I to A.row do

for I to A.col do

If A.glray(.i.j.) > .gray(.I.J.) themaC-graY(.I,j.) :

else c.gray(.i~j.) 0;

sod; (3 procedure Charlmage S)

procedure I mageDot ( A.1 3 Image; war Sum Imetype);

(a dot product of two images: result :-A (dot) 8 5) F

var i,j,Eow94ax,CoIP~az integer;

begin (2 procedure Imageoot 2)

if A.row D arow thom lowset A. Arow #I So ow~4as B.row,

i f A. col S. col themo Col Mal A. col *Ilse Col Max B ol.

sum - 0;

for I I to Powmau do

for j-I to Col Kof do bog$in

of (1 A. row) and ( i 3 . row) sod ( j ( A. (-01 and R. rol

them Sum :- Sum.# A. grayt .i,. D . gray( Ig j.

end; (I for .i do 2)

cd;'( pr0cefidure magclot 8) %

*~%
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F (3 UNARY and BINAIY TEMPLATE OPERATIONS 5) p

procedure Coofi gTemplCoast ( var A : Tempi ate; Col : i teger; vat us Tempi atType);

(a iaitsaliz* all pilot l the I I Cos horizontal template to value 5)

(a the center is assumed to be the physical center of the conf. guration I) o"

var j,cnt : integer; A
begin (a procedure CofigTemplComst s)

(I anita alize the tempi ate configuration to zero 3)

for j : - I to KsTempCei I do bogs a

A. Cfg( . ). r : 0; %

A.Cfg(. J.).C 0;

A.Cfg(,J.).w 0;

Pa,. (2 for i do ,) .5'

cat : O;

for j -(Cot di v 2) to (Cot si 2) do begin

cat cat 6 I; %

A.cfg( cat. ). r 0;

A. cfg(.cat.).c : ;

A.cfg(.cat.).w' val ge;

end; (S for j do 2)

A. men : , cat;

end; (a procedure Coat iTemplConst 2) %

procedure CosftgTempvConlt ( var A ! Template, Dow: auteger; value TePlateTyp);

(5I aI ial I Ia Ill ps tol i in the Now x I vertical template to value u )

(3r the*nter si ansu-d to be the physical ceter of the configuration 2)
var iat i : nI eeer;

begi a ( I procedure Coafil Templcoast 5) -"

(8 k a i I i . I the template oafi gurati on to zero 5) a.

for I I to Ka aTempCo l I do be it i a

A.rfgv, ).r 0.
A.f(f ( 0.

end; 5 a for teal ..

ant 0,

for oI e- 4 to so- di v) do begi a

at n . I *•.5

A, I( at.) r f;

A*rfl( , nt. ).C 0.

A.rfgl -t . 55

nd, II for j ao 5 "

A nvlm a t. -°

snd. ( piedr 0 , 0 o of Tgo,1oass II %

4. .1
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%

procedure Coati g~omp~ooreConst (vwar A: Tempiateo; Now, Cot : iteger; valu 00:Tempi ateType); -.

(J iai toi as allI po 1ela i a the Now by Cotloore templ ate to valume s) 4P

%Jk% (S the ceater is assumed to be the physical Center of the configuration 3)

var i ,J, Cat :Inoteger;

begina (S procedure CoafiliTemplikoroCoaat 2)

(2 inittoIli ze thbe teimplatet coati gurati on to zero:2)

for i:=I to Maz~emisCel do begina

A.Ctg( .i.). r 0;

A. Cfg( i)C:.0;

A. cfg( i.)w:.0;

*ud; is for i do a)

cat :-0;

for a -(Now div 2) to (Now div 2) do

for j. -(Col div 2) to (Cot div 2) do began

cat cat # l;

A.clfg Cat. ). r

A.Cfg(.Cat. ).C j

A.Cfg(.Cnt. ).w: value; 4

cud; (3for j 6o 3)
AnnSue cat;

end; (a procedure Cosfi glomp~ooreCoast 3)

procedure Cona g~ompVNConst (vwar A :Tempi ate; rad I Steger; vat u. Tempi ateTyp*) %
I3 inito iio a Von Nocumea templ ate coati gurati on of radiume rod to valume a)

S the caster is asamd to be the physi cal center of the configuration 3)

var INumber :inSteger; ei.
begina (I procedure CoafigT*NpVNCOnat

(a Inist Ial Ize the temple cinfiguration to zero:3)

fOr Ia I to MSTOOPCell 40 begin%

A.Cfg(. i.).r:'0; A. cfg( I .C:.0;

A.Cfg(.i )W:-0.

end; (I for Ide a)

number :0; 5
for i '-r&d to -1 do begsa

nutmbe r: s umber * 1;

A.cfg(.Number. ). r i ;A. rfg(.number. I . c 0; P %
A. cfg( . umber.). w vat no.

@nd; I3 for I do *t

for -rad to rad do begin C

number . Number - 1.

A. cfgt numober.)r 0; A. rfg( number. c .

A- ,gf Unumbor.I. .&vItnv,

end,. for , d 2)%

IFo at to r ad do t.gi a

number number o tI
A. cfIg( amber ). r ,A. r 19(number I . c 0.

A. r Fg9( number. I vat ue;

end. it for i do a)

A.11nu0 number,

pnid. I proredure 'onfi g~estivoConst 11)

A-8
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procedure TempAdd ( A. Templ ate; var C Tempilate);

or(a posmttiase addition of templates: C A# * . for A UD3 )

.V , Var C~tJCEIA.Cmt3 : inateger;

intersect : booleas;

begin (a procedure ?em@Add 8)

cut :- A.nDOE

for cats :- I to S. un do begia

,::te r sec t ::= f als e;

fo CtA :- .to aon do (I add i stersectinag tempilate pi xel s 3)

i f ( A.Cf9( .CtA. ). r =8. cfg( .catsl.). r) and ( A.Cfg( .cntA.. C S.cfg( .CutB.).C) and

(inatersect =false) theu begin

C. Cfg( .ctA.).w: A. cfg( .CtA.w a. Cfg(.-Cuts.).W

inotersect z true;

end; (3 if Inatersect true U)

i f i ntersect xfal se t ben begi n (3 append non: atersecting pixle 3 )

cat := cat .I;

C.Cfg(.cnt. ).C a. cfg(.Catil.).c;

c.cfg(.cat. )r S. ncfg( cntS.).r;%

C.cfg(.Cnt.).w a. ncfg(.-Cuts. Wu;

end; (5 if inatersect fal se then 3)

en4; (8 for cats do 2)

C . sum cat;

end; (5 procedure TempAdd 2)

procedure TeMPSubtract ( A.8 Template; var C :Template);

(a posetwase subtraction of templates: C -A S . for A U 11 2) 9

var cnt~catA~cmtil integer;

in tersect :booloan;

beglla (S procedure Temp~ubtract 5)

C A; 9

cat :-A. Gum

for cats t to I.aun do begi n

i atersect -fal so;

for catA :I to A.num do ( V subtract I ntersectinag templ ate pixels a)

gf (A.cfg(.catA.).r B.cfg(.catf.).r) and (A-cfg(.coIA.).c r Bcfg(.catsj).c) and
(interseict fal se) thben begi n%

C. cfg( .cnt A.). A. ,fg( .ctA.).w - B. cfg(.-cnts.).W-

intersect tr ue;

end; (2 if i torsert true then .

finter sect -false t hen begi n ( 9 append noni ntersecti ng pi zol s 2)

cat : cat . ;

(-. Cf g( cat. I.c IN5. Ift cuts. ).C;

C.cfgU crit. I.r a. fc . itts. ).r;

C.c fgIl c at %.w B -. f 9( .c nt a. ).W;

end; (5a if ntorsect (ii se thea 2)

end; (I for cats do 2)

C.aus cat,.

end; I5 procedure Tompliubtracl 5)

A-9 9C
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procedure TempHulti ply ( A, : Template; var C Template); p

(s poitaae lmltiplication of templates : C A x U, for A n s U)

var Ct.catAcmtl: integer; ',

begin (8 procedure TempMlti ply 8)

cut : 0;

for cutA : I to A. on do

for cuts 1 to . now do (s multiply intersecting template paxel. x)

If (A.cfg(.cntA. ).r=3.cfg(.cnta.).r) and (A.cfg(.cntA. ).c=.cfg(.cuts. ).c) then begin

cat : = cat * I;

C. cfg(.cat.).r * A. cfg(.catA.).r;

C.cfg(.Cnt. ).C A.cfg(.CntA. ).C;

C.cfg(.cnt.).w:= A.cfg(.catA.).W $ n.cfg(.cntB.).w.

end; (2 if %)

C. n cat;

end; (U procedure Temp1ul ti pi y U)

procedure TempDivide ( AU : Template; var C Tempiate);

(S pointwgse division of templates : C = A / U, for A n U U)

var CntcntAcntU : integer;

begin ( procedure TempDi vi do 9)

cat 0; p.,

for CntA 1 to A.nn do

for Cuts I to B. nun do (U divide intersecting template pi el U)

if (A. cf(.cntA.).r:b.cfg(.catU.).r) and (A.cfg(.catA.).c=U.cfg(.cntU.).c) then begin

cat : cat + 1;

C. cfg(.cnt.).r A. cfg( . catA. ;.r;

C.cfg(.cat.).c A.cfg(.catA.).c;

if a. cfg(.cotm.).w () 0

bthe C.cfg( . cat.). : A.Cfg( CatA. ).W / . Cfg( .Ct.). W

el se C. cfg( . cot. ).w 0;

*ad; (I i f 8)

C. anu cat;

ead; ( a procedure TempDl vi de U)

procedure Tempia. ( A. I : Tempi ate; var C Tempi ate);

( poantVAe mailDU of template@ C wt (A.1), for A UB U)

var Cat.C tA. Cat inoteger;

saiersect bool eas;

begin ( proredurv Temp ax 8)

S A; %

cat A. sulk

(U for each p )el .0 tP plate P 8)

for (hilt I to a. Bum do belln

aItruie t fan se.

for (Ia I to A. &US do (1 maimi t iz nierse(tiog tcmpi ate pili1i a)

.f (A.'fg(. iA. . c B.(fg rnte.)L and (A.-fg(.C .IA.).r 8. cf9(,-t . a.rC and

( iterse(t false) then bell n

if A.'fg( 'StA.C.. I. fI( . oti. .W tben ( fg{.( tM.). f C('fg , at . w;

mitersett true,

end; tI if I aIerqeipt true then I)

%A 10
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ifI intersect -falnt thea begin (9 append mnn tersectiag pixels s)

cat : cat * I; .

C.cfg.Coct.).r :z .cfg(.cnti.).r;
c.cfg(.cmt.).c : . cfg(. cuts.). C;
if B.cfg(.cma. ).w OthemC.cfg(.cat. ).w :A.Cfg(.CntB. ).w

*ISO* C. cfg(. cnt. ).w ; 0;
end; (a if intersect falne then 2)

*nd'. (I for cuts do 5)

C.mum := cat;

ead; (I procedure TompMax 2)

procedure Templidm ( A,D : Template; var C Template);

(I pointmse maimsm of templates Cz Mm(A.D), for A U52I )

var cmt,cntA.Cnt§ integer; P
intersect : boolean;

begi m (S procedure Templi a 2)

C: A;

cat A. Bud%

(for each pixzel i n templ ate 8 5)

for cats 1 to a. mun do begin 0

I itersect: fal so;At

for cntA 1 to Anun do (* wz mhmzt i ntersecting9 template piel 2& 1)

i f IA. cfg(.CntA. ).c=S.cfg(.Cats. ). C) and ( A. cfg( . ctA. ). r.3.cfg(. cats. )r) and

(imtersect -false) then begin .

iF A. cfg(.-CotA..w ) 1. cfg( .cats. ). wthenC. Cfg( . ctA. ). w: D.cfg( .catsl.).w

intersect :z true;

end; (S if intersect true them S)

if inter:ect ,false them begin(S append nonintteecting pizelp s)

c at ca t 4

C. cfg( .cat. )r I.cfg(-cats. r;

*is* C.cfg(.Cat.).w:o;

end; aS f i ersect fal se t ben 9)

enad; (t for cuts do S)

C.Mnu : cat;

end; (a procedure TVMPPG m )

procedure TospCiri-levius (A,1 S Template; var C Template);

var 1,CntCniA.Cftii integer.

duplicate bool v a;

rlNg a ( 8 prot, d~ro mPOCI riIcr1 Opt usI

.nt 0.

(11 for each p, st . n i pi ate v 3 8)

for cats I to a .nus de

(I compute 1bil,by) 8 Alat avi for template A centered 21

is os V bi. by) and sun tbe product t eo C( ambt. avsbyi 5)

for catA in An ue do bolt.

dupl ate Fals e.

%a



(a fi ad thbe pi xel ima the template configuration if it exists s)

for i :zI to cot do :

if (C.Cfg(.i.).r -A.Cfg(.CtA.).r f 2.cfg(.cntH.).r) and

(C.Cfg(.i.).Cz A.fg(.CntA.).C * B.Cfg(.Cftb.).C)

the bebgina (a pi xel already in templ ate C configuration 3)

C.cfg(.i.w :0 C. Cfg( .ia.)w f A. cfg( .cutA.)w 9 B. cfg( .cot D.).w

dupi cate true;

end; (2 i f ps lel found 5) 5

ifI dupl icatke false then begin (3 appiend nonintersecting pixels 3)

cot :- cnt f I;

C.Cfg(.ct.).r A.Cfg(.CntA.).r f B.cfg(.cntf.).r;

C.Cfg(.Cnt. ).C : A.cf9( . C t A..C + S. cf9( .Cnat B.).C;

C.cfg(.cnt.).w ~A. cf9( .cnat A.)w 2 11. cf9(.-cnat B.).w;

end; (S if dupl icate false x)

-end; (2I for Cnt A do 2)

C.num := Cat;

end; (a procedure TernpCi rcl ePI us 5)

proceduare Tempircle~ax ( A,11 Templ ate; var C Templ atet);

var i ,Cst,cntA,cntM integer;

duplicate :boolean;

begi a (5 procedure TempCi rcl *Kai 5)

cot 0;

(a for each pi ael I a templ ate a 5)

for Cato : I to UnSum do

(11 compute I( bs, by) I A( artSy) for templ ate A centered 3)

(Soan Bbx.by) and "it nxmze thbe product ina C( ax~bz,ay-by) 5)

for catA I tA.undo begl a

vI I Cate: fase

(I fad the pixel m the template configuration if it *lists 5)

,or I : I to cat do

i f ( C. c fg(.).r A. cfg( c at Ar 9 sc f 9 c at .. r) and

(C.cfg( .i.).c A. c Fg(.c atA.). C B. Cf9(.C at R..C)

then begina (11 pi 1.1 already in templ ate C configurati on 2)

it A. U g(.C tt.. w 3 5.cf g( .Ctt .1. w )C. rf g(.1

then C.-fg(.1. ).w A.rfg.ctA.).. I I.Cfg(.(nt3.*,

dop icate true.

end; I5 a V pixel fond 5)

f dupirrate false the be inS a append non. nitor t t of I. , i

cot aSt I

rfgl amtlr A ag( t Ar R. .f gi a t a. r

Fli aV t A. f C niA 0 5f C, t I.

Fg ri A f ( nil A I RFtf C, ni

end. I.2 f 4upI ,it, Vl. e S

entd, 2 Foar - at A do al

atii.

end, I pr-o.dure T sep, rs I Ma 3) -

.OF

A 1.I

% % %
40 "J,
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procedure TemiCirleopa ( Ass Temp. ate; Iar C Tempiate);

var icat,Cat A, cat : antvger;

vll duplicate : booleas;

begina (s procedure TeOCPCrclesla 3)

cat 0: ;

(9 for eacb pixel ma temlnpite is a)

f o r c ut s : - I t o a u d o 1
(a composte l(bl.bY) 8 Atalay) for template A centered 3) P%

(S o 5( DX, by) and mIill. the prod,:t ia C(az*bzay~by) 2)

for ClItA : - I to A. 800 do beg a

dupi s cate fat ; P
(a find the pixel na the Ivispiate coafiuratIas if i t el lt. 3 )

for t I to cat do P.

4.Fif (C.cfgl(. .. r A. cfl(. ntA.).r * I.cfg(.cats..r) ad 

(C. cfg( i.)c A. fIg(.catA.).c * I.cfg(.cola.).c)

if A.fg(. ctA.).w I B.cf(.-ct .).w C. fg()w

theel C.ffg S-. A.c i catA.) I.rf ( C l. ). , 

dupisat, ta r ,. ,p
e d. (I , F p iel Found f)l

f aul te fa)s taen beles al append moss aters(. ag pl lPI s li

at Ct * II

( . fg ( it. .r A . Fi C (I tA . * , fg(. r a .) r,

(.rfg, ait )~ at • l { A, I I , fIl( l .)t ,

ag at * A flg aisA S a fi s W,

eind. (I V depi -atis I as to Sp

id, f Far ,at A, It I,

a'ii s rias-.Iur. is rtos CG 1 2

mar',. T.4 -qoar -%&1 4, a 3 ae1 I. or YosaiI at*

'*1 01 ... A 111 ml 'I..

.A!( . atA taa , *,S

.. '1
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.0 1 ~IF dupl icate fals, them begin (11 &ppend aomtrsectilig pixels 2)

cut :~cot 0 1;

% C. cfJ( . cot.)r ~A. Cfg(.c~tA.).r # 5.cfg(.cntm.).r:

C.CIF 9(.Cot.). C A. Cf9( . Cat A.)C * B. Cf9( .Cat3.).C;

C. CIF ( .C at )W: A. Cf9(.-C at A.) W 3.CF (.C at B-.).

P. ond; (S i1f dupl icate false 3)

end; (39 for cot A do U)

C. OUR :- cot;

end; (IS procedure TemsplquareMax S)

procedure TompSquaroen ( A,$ : Tempi ate; var C Template);

var i ,COI,C~tA.CntI integer;

duplicate : boolean;

begi a (9S procedure TessiquarePto 1 )

cut .- 0,

ft for Parh p.iel ina temi at& a 2)

for coa :~ I to aumo do

s COMPUte V bl, by) * AC al, ay) for tep ate A Centered s)

IS ona10 tb, by) and amnmaze t he sun i n C( ax~bx, ay~by) U)

for catA :: I to Anumi do begin

duplicate false*

(a find the pixel ina t he tempi ate confi gurati o i f i t exi sts S)

for i :- I to cot do

i F C. cfg(.i. ).r A.Cfg(.CntA.).r * .cfg(.catB.).r) and

(C. cfgl -1-).C A. cfg . CntA..C + B. Cfg( .Cot D.)

them begina (2 pixlel already in templ ate C configuration 2)

i F A.cfg(.cmtA. ).w + 9.cfg(.cntfl.).w (C.cfg(.i.).w

theon C. cfg( .ia.).W A. cfg( .cnt .)W + B. Cfg(. Cat B.).w-

ILIdup i cate true',

end; (I i f pixlel f...od x)

i f dupi iCate false then begina

cat :-cat 6 1;

C.cfg(.cnt.).r A.Cfg(.CntA.).r + fl-cfg(.cntB.).r;

VC.cfg(. cot.). : A.cfg(.CatA.).c + B.cfg(.cntB.).c;

C.Cfg(.Cat.).w: A. cf9( .CtA..W + B, Cfg( .cat B..W-,

end; ( I if dupl icate false S)

end; (I for CLt A do 5)

C. nun - cat;

Pad; (S Procedure TempSquarefIn a5)

procedure TempScal ar.4ul ti pl y ( A :Tempi ate; Val ue :Tempi ateT~pe. ar 'm

I Smul t I plcation of an Imae by a scat a( C k vatu Ur

var crit ntegor;

bogi n ( procedure TpspS, i ar mul ts pi~ ySi

% C A;
for cat ,I t o A.nun do c. r-fg cnt. . at Ia

end. S procedure Tvemetcal ar"Iu ti piy 1)
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(2DBI NARY IMAGE -TEMPLATE OPERATI ONS 2

procedure ImageTempCirclePlU2 ( A Image; 3 Template; var C Image);

(* Convolve A with tempilate I S)

var RowCol,i,j,cnt : integer;

b Sgi I mageType; .g~u~ c P s2

noia( 2procedure I mg~m~ c P s2

C. row : A. row- C. Cot : 2A. Cot

for Row I to A.row do

for Col :~I to A. cot do begina

(S sum the products of i mage pi xeI s and overt ayed tempi ate pi xei a 5)%

Sum : 0;
for cnt :~I to B.ncan do begin

i f (Row~i )I) and (Rowi (A. row) and (Cal +D-1) and (Cal eB(A.cal)

t hen Sun : Sum + A. gray( .Rowt , Cl +j. ) I B. cfg( .cut.).w,

end; (* for cnt do 2)

(set thbe new pixel value equal to the sum a)

C.gray(.Row,Col.) := Sum;k

end (2forCol do S)

end; (2 procedure I mageleopCl rcl ePIus 2

procedure Imsge~empCirce~ax ( A : Image; U Template; var C :Image); .

war RtowCol,,j,cnt: integer;

Kax~al : ImageType;

begi n (2 procedure I mageTempCl rcl eMax 2)

C. row :~A. row- C. col : A. col;

Constl mage (C, A. rowA. col, 0);

(for each pixel position 2

for Row :~1 to A.row do

for Col 1~ to A. cot do begina

(t set maxval to the product of present image pixel and templ ate pixel center S)

cot :2 1;

while (3.cfg(.cnt.).r (> 0) and CB.cfg(.cnt.).c (> 0) do cnt :=cnt + 1;

if (L-cfg(.cnt.).r =0) and (B.cfg(.cnt.).c =0)

then MaxVal A.gray(.RowCol.) 2 B.cfg(.cut.).w (* template center defined 2

else MaIVal :0; (S templ ate center undefi ned*2)

(I search for the local maxi mum product s) A

for cat := 1 to B.nun do begin

if ((Row4-i~z) and (Row~ij=A.row) and (Col+j)=1) and (Col~j(=A.Col)) then

if (A.gray(.Rowem,Col~j.) 2 B.cf9(.Cnt.).W) ) KaxVal

then Maxyal := A.gray(.Row~i,Coij.) * 3.cfg(.cnt.).w,

snd; (2 for cant do a)

(2 set t he new pi xel val ue equal to thbe maxi mum:2)

C. gray(. Now, Cal . :.?axVal;

end; (9 for Cal do 2)

end; (2 procedure I mageTempCl rcl eMax 2)
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proceduLe lmagetempCircleE a ( A : Image; I Template; var C Image); S

var Row, ColiJcut : integer;

T nVal : ImageyPe;

begin (I procedure ImageTlimpCirclePEa 2)

C.row: A.row, C.col :- A.C1;

Constlmage (C,A.rowA.col ,);

(i for each pixel position 2)

for Row 1 to A. row do

for Cal :I 1 to A.Col do begin

(S set mnvai to the product of present image pixel and template center pixel 2)

cat :. 1;

while (B.cfg(.cnt.).r <> 0) and (B.cfg(.cnt.).c (> 0) do cut := cot * 1;

if (B.cfg(.cnt.).r = 0) and (L.cfg(.cnt.).c = 0)

then PlEnVal A.gray(.Row,Col.) a B.cfg(.cnt.).w ( template center defined 2)

else E nVal 0; ( template center undefined 2)

(s search for the local mnimum product a)

for cat := I to B. num do begin

i : .cfg(.ct.).r;

j B.cfg(.cnt.).c;

if ((Roawi>=1) and (Row+i<=A.row) and (Col~j)=t) and (Colaj<=A.col)) then

if (A.gray(.Rowli,ColaJ.) S B.cfg(.cnt.).w) ( 1Naval

then PGAVal := A.gray(.RowtiColj.) * s.cfg(.cnt.).w-

end; (s for cnt do S)

(V set the new pixel value equal to the mni mum*) 

C.gray(.RowCol.) :z Knval;

end; (* for Col do 2)

end; (s procedure ImageTempCircler4n )

procedure ImageTempSquareax ( A : Image; A Template; var C Image);

var RowColijpcnt : integer;

MazVal : ImageType;

begin (S procedure ImageTempSquareMax 2)

C.row := A.row, C.col := A.col;

CoustImage (CA. row, A.colO);

(2 for each pixel position 2)

for Row:: I to A. row do

for Col :: I to A.col do begin

( set maxvai to the sum of present image pixel and template pixel center S)

cat :: 1;

while (Rctg(.cnt.).r <> 0) and (B.cfg(.cnt.).c (> 0) do cut := cat + 1;

aif (B.cfg(.cnt.).r = 0) and (B.cfg(.cnt.).c = 0)

then aIVal A. gray(.RowCol.) + . cfg(.ct.).w (a template center defined 1)

else N aval A.gray(.RowCol.); (s template center undefiri d )

( search for the local maximum sum S)

for cut : = I to B. num do begin

i B.cff(.cnt.).r; j := B.cfg(.cnt.).c;

if ((Rowfi>-l) and (Rowti(:A. row) and (Col+j>:l) and (COl +,:A. col)) then

if (A.gray(.Roht.i,Colaj.) + B.cfg(.cnt.).w) > FaxVal

then KazVal := A.gray(.Rowai,Colaj.) a B.cfg(.cnt.).Wl,

end; (s for cat do a)
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(2 set thbe new pi xel valume equal to thbe maxima 2)

d". C.gray(.Rows Col . . aiVal;

end; (a for Cot do X)

end; (S procedure ImageTeupsquare~ax 8)

procedure XaageTemwSquarelin ( A :Image; 2 Template; var C Inage);

var *owCol,i.4,cot :integer;

M nyal : imagefype;

begin (S procedure Imiagefempsquare4M 2)

C-row :=A.row; C.col :- A.col;
Constl mage (C. A. roW.A. cal 0);

(a for each pixel pohition 2)

for Row: I to A. row do p

for Cot I to A. col do begina

(S set ni val to the sun of present image pixel and template center pixe S)

Cut : I;

while (BLcfg(.cntL.).r > 0) and (D.cfg(.cnt.).c (> o) do cnt := cut + 1;

if (U-cfg(.cnt.).r =0) and (3.cfg(.cnt.).c =0)

then MinVal A.gray(.Rtow,Col.) + f.cfg(.cnt.).w (3 temtplate Center defined 2)

else loVal :-A. gray(. RowCol .); (X template center undefined 2)

(S search for the l ocal mni ma sum)

for cat : = I to S. urw do begina

i .cfg(.cnt.).r;

B .Cfg(.Cnt.).C;

if ((Row~i>=1) and (R~wi<A.row) and (Col~j),=1) and (Col~j<=A.col)) then
if (A.gray(.Row,CoI~j.) + B.cfg(.Cnt.).W) ( Pnval

then Konval :=A.gray(.Row~i,Col~j.) + B.Cfg(.cnt.).W',

end; (* for cnt do 2)

(I set t be new pixel value equal to the in ni sun 3)

C.gray(.Row,Col.) := Minval;

eod; (S for Co1 do 2)

eud; (X procedure ImageTempsquarep4 n S)

end. (S Module Real .1A-Operations 2)
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Appendix B: AFIT Image Algebra Preprocessor

program I mageAl ge br aPre processor ( I input * out put);

(2 Thisa program reads a 1Ile contai ninag thbe I mage Al gebra descri pt ion of 2

(2 an I mage processing algorith, translates it to VAX PASCAL source code S)

(a and procedure calls,9 and out puts t he resultsa to an external filIe for 2)

(a subsequent compilation. This program is written in VAX PASCAL. 2)

(S Capt Christopher J Titus, Air Force Institute of Technology, GE-86D 2)

(a gl obal constants, types, and variables 2)

coat MaxNode = so; (S maxi mum number of nodes in the binary tree 2)a

BufferLen =138; (* maui mum character Ilength of I A comand InI e 2)

NameLen = no; (Z maxi mum character l ength of vari abl e nams 2)

Kax~ames = 100; (* maxi mum number of vari able nams of one type *)
Defaul ti mage = I'real' (2 defail t data type of i mage gray l evels a )

Defaul tTempl ate ='real'; (2 default data type of template wights S)

type BufferStr = varying([Buffer Lem] of char;

NameStr =varyingiNameLen] of char; *
I utermed~per z record exi st :bool san; end;
Tree = array (.1..Max~ode.) of record (S binary tree Implemented with S)

val ue Namestr; (* a double linked list structure 2
parent integer; (2 using an array for data storagse2

Ichild integer;
rchi Id Integer;
end; (2 tree record 2)

vani abi eLi at = array (. 1. . MaxNames.) of varyi n9[(NamsLenj of char;

var i RI,i R2, iR3, I 4 I RS, tRl, tR2, t3,tR4, tRS nI termedOper;

Nam,Indent,Tempmame NamStr;

buffer,oldbuffer : ufferStr;

IMagw-Li st, Templ ateL at, ScsI arLI at :Van abl eLi st; a

NumI mageNams, Numlempl ateNains, NumScal arNains i nteger;

InFile,TmpFile,file : text;

Expression :Tree;P

l,j,nodeptr,nodecnt,code :integer;

ImageType, Temp atetype :varying(71 of char;

DeclaredType varying[4J of char;
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procedure As~igalateradleault (operitype char; operator NainStr;

var Resultt NainStr);
(I assign an i uterndi ate resul t or the C oprati on 2)

begina (S procedure Assigal ntermaduesul t

Result :- 1 1;Ne

it (operator (> 1:-1) and (operator (> 1.1) then bpgln

(2ssigna an inatermeddiate result for the operation 2)

if operitype - Ill then begin

(S operati on is i mage-i nage, i nage-templ ate, i mage-scal ar, ot unary 2)

(S imnage; the result is an imnage; assign inutermedi ate image operands 2)

if iRl.ezast 2 talse*

then begina Res ult I liut; iRl.exist :=true; end

eliao i f i R2. exi t *false

then begina Resul t 'iR21; iR2.exist true; end

else if iR3.exist false

then begi n Resul t 1iR3'; iR3.exiat true; end

else if iR04.exist *false

t hen begina Resul t I'iR4' ; iRP4. exi at t rue; end

else if I E5.exist *false

t hen begina Resul t 'I R51'; i R5.exiat true; end

el se begina

Result 0;

wri tel n;

writel n ('ERROR so mre intermediate images available ERROR');

writelna ('ERROR expression can not be evaluated ERROR');

end;

end; (2 if i mag. operati on 2)

if aperitype v 't0 then begin -

(2 operati on is tenpl ate-tenpl ate or tespl ate-scat ar; the result 2)

( 2 isa a tempi ate; rel ease I ntermadi ate tempi ate operands 2)

it tRi.ezist = false

then begin Result 'tR'; tR2.eist true; end

else if tR. exi at false
then begin Result 'tR3'; tR.exist true; end A

else if tR3.elist false

then begin Result 'tR'; tR.exist true; end

else if tR.exist trfale

then begi a Result := tR51; tR.exiat true; end

else begin

Result

wi tel a;%

wri tel n (' ERROR no more i stermeds ate templ ates availIabl e ERROR';

writein ('ERROR expression can not be evaluated ERROR');
end;

end; (a i f toepl ate operatioan z)

ead; (2 if operator then 5)

end; (2 procedure AssigalntermedResult 2)
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procedure Assigmatesults (operaodl.optrandZ,operator :Nam Str;

var Result N ainStr;

var express:Tree; &odeptr:integer);

(a update the expression Or** to reflect the result 2)

(S of the operati on; rel ease any inmtermedi ate results 9)

begin (I procedure Assignlkesults 2)

it operator - :-' then Result :~operand2;
if operator = .1 then Result :~dot val 1;

(* update the expression tree to reflect thbe oper at ion resul t 8)

express(.nodoptr.).value :- Result;

(x rel ease unused i nterowdi ate operators it)

i f (operandl = I R1'l) or (oporand2=-imRt') and ( Resul t >1i nil) then i II. exi t fal se;
i f ((operandl='iR2' ) or (operand4' i R21) and (Resul tliR2l) then iR2.eXiat fal Se;

i f ((oporandililk3') or (operand2=''iRV3) and ( Resul to' i3' ) then i R3. exiat :~falseo;

i f ((operandi1liR4l ) or (operand2=' aR4') and (Reaul to'iR4') then iR4.exi st :~fal se;

i f ( (operandl4iziR51 ) or (operand24'iRS') and ( Resul toliR5') thena i R5. eli t :falsBe;

i f ((operandl4' tRl') or (oporand2=1 tRi') and (Resul t<>'tnl' then tRl.ehi at fal se;

if IF operandI =1tR2l ) or (operand2=4'tRP21 and (Resul t<)tR2') theon t 22. exi st fal se;

i f ((oporandlz4'tt3l) or (operand2ltR3I) and (Resul t('tR3') then tR3. exisat :~fal se;

iF ((operandl4' tR4') or (operand2=- tR4') and (Reaul t(>'tR4 then tR4.oxi at :~fal se;

iF ((Operandlz'tRs' ) or (oporand2=1 t115' and ( Pesul toltR5') then tR5.euiat :~falsBe; ..

if (operandlz'?') or (operand2='?') then express(.nodeptr.).value := ?4

express(.nodeptr.).lcbild o;

express( .nodept r.). rchi Id :~0;

end; (2 procedure Assigansl to 1)

procedure Sinary~pration ('var express :Tree; nodeptr :integer);

(C wri t thbe bi nary opersti on procedure calls to thbe out put filIe a)

va r operator, operandi, opersnd2, Resaul t,. teupoper :NawSt r;

oporlt ype, oper2t ype, tept ype :char;

begin (3 procedure binary~peration C

(S retrieve the operauds from the binary tree S)

operandi :express(. express(.nodeptr. ). Ichi . ). val uc;%

operator expresnC node ptr. ). val ue; A

operandZ : erprese(.express(.aodeptr.).rchild.).value;

(9 deterine the operand types 2)

operltype ' ; operztype : 1;

for i :=I to NuamageNan do begi n

if operandi =lImage Uat.i . ) thben operltype : il

if operand2 lmageList(.i .) then oper2type : 1

end; (Z for i do C)

for mI to NWQMrepl ateMams do bogi n

if operandi Tempi ateLi st( . .) then oPorlt ype : -

if operand2 Tempi ateLisat( .i then operztype: t-; %

end; (C for i do 5)

for i :2 1 to NUaRScal armams do begin

if operandi Scal arLit (. theno operitype: 'a;

if operand:1 Scal arLiat (.i. thben oper2t yp :4sl;

end; (2 for i do C)%

B-3

'A



ifI oper it ype ''them begino

NS opritype :z s,

ONot i :- i to Iength(operandl) do

if (operltype~ 'aI') and (operandiil in(''''.9J

them operityps I''

else optritype 1'

end; (S if operitype them 2)

f oper2t yp* - I' thbom b.gi a

oper2type :- is#;

for i :x 1 to longth(operand2) do

if (oper2type - 's') and (operand2(i1 in 1'-0, 9-1..'9') 0'

them oper2type :z -'

els oper2t ype '

end; (2 if operitype then 2)

i f operitype ' ' then

wri telna ('IERROR ',oporandl,'I is not an Imsage, template or scalar operand ERROR');

if1 oper~type ' I' then 
%J

Wri tel n (ERROR Ioperand2,'I a not an i mage, templ ate or scal ar operand ERROR'); aa

if (operandi ('')and (operand2 (> '9') then begin

write (Pfile,indent);

(* arrange the operands in the ;roper order:i-.itts)

if ((operitype 'a'9) and (operztype = 'i')) or

((operitype ='t') and (oper2type =I')) or

((operltype '5',) and (oper2type ='t')) then begin

tempoper :operandl; 
4

temptype : operitype;

operandi :'operand2;

0 operltype oper2typ#;

operand2 :tempoper; 
%-

operztYPe to topt ype; '

end; (S arrange operands 2) '

Assi gulnterinedResul t (operltYpe,oporator,Result);

if (operltype ='i') and (oper2type ='iI) then begin

(a 1 mage-i mage bi nary operati ons 2)

if operatortl] in
then case operator(lJ of

wri tel n (Pf I e,'IImsgOSubtract ('operand,' oporand2,'II,,Resul t,')I

'5' if (length(operator) > 1) and (operator(21 '2')

then wri tel n Pfi Ie, I ImageExponelt ('IIoper2ndl,'I,',operand2,'.'.RPSU1 t,I);') -

IIea wri teln a PfiIII I, I magemutl ti pily (' I operandi.

,Inperand2., , ,Resul t, '); '

wro tel n (Pfi Ie,'II mage a (operandl. I I Ioperand2, 1 1 esUl t.')'I

Wrl I &I ( Pfi 1 , 1 lageDot (~optrand, I I Ioperand2. dot va))'

wri telIa (Pfgle,operand2,' Ioperandl,';');
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N

otherwise writeln (PFilaICharimsge (',operandl,

I,'I'I, operator,''',' 3I oPerand2, I,'.,Resul t,I); I ); 5

end (s case operator 3)

else begi n
wri tel n;A
writeina ('ERROR operator ',operator,' does not exist ERROR');P
wri tel a ('ERROR for image-image operations ERROR'); "

operandi '7'I?; operand2:= '7';

end; I

end; (3 I mge-i mage binary operati ons 3)

if (operitype = 'i') and (opertype ='t') then begin

(Si mage-templ ate binary operations 3)

if (operator(i) in('(','(']) and (operator(]1 in('+''v','')

then begin

if operatorf 1 '( then

case operator(:J of

+1wri tel n (Pfi Ic,' mageTempci rcl ePI us C' ,operandl,

oerand:, ',Result,');;

I'wri tel n (Ff1 le, 'I mageTempci rcl eMax (',operandl.,

11 writeln (Pfile,'ImageTeupCircleF4n (',operandl,

Ioperand:, ', ', Resul t , ); ') ;

end; (3 case operator 3)

if operatorfi] :'(' then

case operator[:] of -

IV, writel n (PF11e, '!igeTepSquarePax (' ,operandl,

operand2,', ,URenal t,') ; ') ;*

-1 writeln (Ffile,'I,.geTempSquaret4nk (',operandl,

end; (* case operator' ,'oead, )eta ,')

end (3 if operator then 3)

el seoeg

wri telna (' ERROR operator ',operator,' does not exist ERROR');

wra tel n (' ERROR f or i sage-templ ate operati ons ERROR');

operandi := 7'; operand2:= '7';

end;

end; (s i mage-temp ate binary operations 3)

*1



it (operltype =It') and (oper2typt = t') then begin

(S tempi ate-tempi ate binary operati on. S)

if (operator(1] in (''-,*,'v,''')or

((operatoril] isn '',(] and (optrator[ZJ in~iv,'

then begin

if operator~l] z'(' then '1

case operator( 2] of

writela (Pfile,'TeinpCircleP us (',operandl,',-,operald2,'. ,,RCultO);');

I v. wri telna(Pfi Ie,'ITempCi rcl e~ax( I Ioperandi, I II'Ioptrand2,'I, IResuUt,')I

11 wri teln (PfilIe,'ITepCi rcl e14 a ('IIoperandl,'IO Ioperand2,'IResul t.')

end; (S case operator 2)

if operator! 1 'C then

case operatorf21 of

I'v' wri tel a( Pf ile,'TempSquareKal('l,operadl,',',op~rafld2,',',ReguI,);');

I wri tel n ( Pfi I e, I TempSquareP4 n ( I, operandi, I'I'I, operand2,1 I'I'IResUl t,')I'I

end; (* case operator 2

if (operator~l] in [(I'I [I']) =fal se thene

case operatorf11 of

wri tel a( fi Ie, ITempAdd 'operandl, III'Ioperavd2,'.,', Result,')I %)

* ,wri tel n ( Pfi 10, 1 TempSubtract (' operandl, I'II Ioperand2, ',' 1, Resul t, 'I;

'2': ri tel n(Pfi Ie,ITempJuti pi y (operandl,'II'Ioperand2, II IResul t, '

I'I wri tel n Pfi Ie, I epDi vi de operafldl, I II Ioperafld2,'II'IReaul .I,)

I ri tel a(Pfile,'Tepmax (',operandl',',operafld2,',',Result,');');

1- wi tel a( Pfi Ie,Tep?E n(, 110randl,'IIoporafld2,''Resui t,')I'

:9 wra tel a(Pfile~operand2,' := ',operandl.';');

enad; (S case operator 2)

end

el so begi n

wri tel n;

wri tein (' ERROR operator ',operator,, does not exist ERROR');

wri toln (ERROR for template-template operations ERROR');

oporandi '?'; operand2:=It

end;

en (2 tempi ate-tempi ate bi nary operati ons 2)

I' .

%
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if (operitype ='it) and (oPer2tYP# 'S') then begin

(S image-scal ar binary operations a)

if operator~l] in(',',0''''

then case operator(1] of

'S' if (length(operator) >1) and (oporator(21 ' 2')

then begin '

wri teln (PFui e,P'ConatlImge C ' .Resul t, ', ',operand1, ' row,', I

operandl,'.col,',operand2,');');

write (Pfile.lndent);

writeln (PfIl,1laageExpouent (',opoerandlO,',Result,',' ,ResUlt,');');

end

else begin

wra tel n ( p11I e, Conatimmage C', Resul t, ' ,-',operandi, ' *row,,

operandi, '.Col, ',operand2, '); ');

wri te (Pf lIe, I dent)

wr i t el Pf ilIe, Image~ul ti pl y ' oper andl, I,'Resul t, I' Res ult,') )

end;

'' begi n

Wri tel n (PFile,'Cankstlmage (', Resul t,',',operandl,'.row.',

o per a ndi ' c coI , I ,oape r ad2 a ) 2,

write (Pfile,Indont);

wri tel n (Pfile,'lageoi vi de (',operandl,',',Result,' ,',Resul t,' );' );

end; '1

ot herwi se begina

wri tel n ( PFi I e, I Constlimage (',Resul t, I , operandl, I' row,' I,

aperandi, I' col , I , operand2,1 %

write (Pfile,ladent); %

writein (P'File,'Charlaage (',operandl,

end; (S case else 2)

end (S case operator 2) r

W
el se begin a.

wri tel a;

wri teln ('ERROR operator ',operator.' does not exist ERROR');

wri tein a'ERROR for iasge-scal ar operati ons ERROR');

operandi ' 7'; operand2 '= 7'1

end;P

end; (2 mage-scal ar bi nar y operati ons 2

p7..
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if (oPeritype 't') and (oper2type 's') then begin .,

(8 templ ate-scal ar bi nary operati ons 2)
%* %~

* if operator( r] in ['I']
then case operator[I) of

'I' : wri telm (Pflle,'TempscalarMultiply (',operandl,, ,operand2,,,,Result,#);#)I

end (S case operator 9)

else begi a '

rUi tel.; a4

wi yteln ('ERROR operator ',operator,' does not exist ERROR');

writeln ('ERROR for template-scalar operations ERROR');

operandi ?I ; operand2 '7';

end;

end; ( template-scalar binary operations $)

if (operItype 'a') and (oper2type '') then begin

(a scal ar-scal ar banary operations S)

if operator : ='

then witelo (Pfile,operand2,' ',operandi,';')

els e begi n

wni tel n;

wri tel n (' ERROR operator ',operator,' does not exist ERROR');

wri tel a ( ' ERROR for scal ar-scal ar operations ERROR');

operand : ' ?'; operand2 1 '' ;

end;

end; ( scalar-scalar binary operations t)

end; (S if uperands (> ? then s)

Ansi goResul t: ( operandl, operand2, operator, Resl t, express, nodept r);

end; (S procedure DinaryOperation 8)

procedure UnaryOperation (var express : Tree; nodeptr integer);

(3 write the unary operation procedure calls to the output file )

var operator, operandI, operand2, Resul t : NameStr;

operltype,oper2type : char;

begin ( procedure Unaryperation 2)

(S retrieve the operand and operator from the binary tree 2)

operator := express(.nodeptr.).value;

if express(.nodeptr.).lchil d () 0 '5

then operandi :. express(.express(.nodeptr.).lchild.).val ue ,

else operandi expres(.express(.nodeptr.).rchiId.).value; --

operand2 : ' ;

B'

'--
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(a determine the operand typo )

operitype ' ; oper2typo :z 1;IN

for i I to NualmageNams do aif operandi lmagelaist(.i.) then operitype 'a'; P

for i I to Nuamepl ateliames do

i f operandi. TempilateLsat( .m. then operitype ';'

for i =I to NuaScal arNames do if operandi Seal Sr.,st( .i.) then operltype I';

if operltype I then begin I N

operltype :='a-;

for i := to Zengtb(operandi) do

if (operltype '5I') and (operanditi I in ('-',..-19)

then operIt ype a

el se oper it ype

end; S if operIt ype thben 2)

i f operIt ype t 'bten

wri Itel n (I' ERROR 'I operandl. I i s not an i anage, tempi ate, or seal ar operand ERROR');

i f operandi <> I'?I then begi n

wri te ( Pfi I ep Indent);

ASS gnl nternedRegul t ( operIt ype, operator, Result)I

case operitype of

'a' begi n ( X unary i mage operati ons S)

i f operator ='I' then

wri tel n ( PfilIe,'IAbsval Image (',operandl,' ,',Result,'); ');

if operator ''then begi n

wri tel n ( PFi I e, ' Const Image ('ResultI, *.

I, IIoperandi, I row,'IIoperandi,'I. co , -1);')1

wri te ( PfiI P, Indent)

wr i t e Ia ( P fi I e I' I ma g e u I ti p I y o p e opra n d, I I I I R esulI tII ''R esu ' ) I t I

end;

end; (a ease unary image operations S)

It'I begi n (* unary templ ate operations 9)

if operator ='1! then

wri tel n ( PfilIe,'IAbsVaI Temp ( operandl, I II IResult1,'' 1

if operator =--' then

wrm tena ( Pfi Ie,'ITempScal ar~ul ti pl y ('operandl,I,1-1,'1,1ResultI,')I)

end; (2 case unary template operations S)

end; (2 ease operand type 2)

end; (S if operandi (> ? then 2)

Assi gnResul ts ( operandl Ioperand2, operator, Resul t express, nodept r)

end; (2 procedure Unaryoperation t)
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Procedure IAParser (buffer SufferStr; var express Tres;

va r no doptr :Inat 0eer );

(S parse theP IA expressions and build a binary tree of operands and operators s)

var i,4,aezt :integer;

letter :char;

assigmoper,absvalflag,EndofOPOrand :booleas; ,

begin (S procedure IAParser X)

a bavalflag :=false;
(S if an assi gnment exisets in the expressi on, eval uate tbe right side 2)

amsi gnoper :fIal se;

if imdox(buffer,'' <> 0

then beginA

assi gnoper true;

IAParser(substr(buffer,index(buffer,'=)+2,length(buffer)-inde5(buffer,':=')-1),
exproe, nodeptr);

end (I then *)

el se begi n nodecnt 1; nodeptr 1; end;

if assi gnoper = false then begin (2 transl ate the IA expressi on 2

while I length(buffer) do begin

letter abufferi];

next + 1;

if (letter in [a.'''..2,G.'])or

((letter ')and (buffer[nextj in '.9')

then begi n (2image, templ ate, scal ar, or variable operand 2)

nodecat :=anodecnt + 1;

If express(.nodeptr.).value

then express(.%odptr.).l child anodecnt

else express(.nodeptr.).rchild :anodecnt;

express(.nodecnt.).pareat := nodeptr;

next;

EndOf Operand := false;

while (j < lemgth(buffer)) and (Endfotperand false) do

if (buffer~il in 'a.'ulw..'',' '0..'])or

((bufferilm'.') and (buffer~j+l] in 1'01..19']))

then j :=j+ I

else EndOfOPerand := true;

express(.nodecnt.).value substr(baaffer,i,j-i);

exres .= nj; n. hiId o

express(.nodecnt.).rchild 0;
exprss(.odent.)rchid 0

end; (S if image, templ ate, scal ar, or variable operand*2)
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if letter = 'I' then begin (S start parenthesis 3)

,'AP otnodecat nodecnt 1;

if express(.nodeptr).value

then ezpress(.nodeptr.).lchild nodecnt

el e exprese(.modeptr.).rchild : nodecnt;

expresu(.nodecut.).parent :- modeptr;

nodeptr : odecut;

I : I 1;

end; (S if Start parenthesis S)

if letter - 'P them begin (S finish parenthesis 3) S

if express(.modeptr.).parent ( 0

then nodeper :express(.nodeptr.).parent

el se begin

nodecat := nodecat * 1;

express(.nodeptr.).parent nodecat;

ezpress(. nodecnt.).lcbild nodeper;

modeper nodecnt;

end;

i := i * 1; 'p

end; (3 if finish parenthesis 3)

if (letter in (i(iipieuli,/ ,.iBivi ii, iJ:iP=i i)J) or

((letter= '-') and (buffer[next} in [a'..'u'w'..'z,'(']))

then begin (3 algebraic operator encountered a) ,

if express(.nodeptr.).value < ' then begin

(3 chained algebraic operator encountered - get a new node 3)

nodecnt :nodecnt + 1;

if ezpreas(.nodeptr.).rchild () 0

then begin (3 chained binary operator encountered 3)

if exprees(.nodeptr.).parent () 0

then begin (* chained operator in parentheses, alter pointers z)

(a place the new node etween the present and parent node 3)

(a link the new node to the prevent node's parent 3)

if express(.express(.odeptr.).parent.).lcbild =nodeptr

then express(.express( .nodptr.). parent.). I chit d nodecat

else express.express(.nodeptr.).parent.).rchild nodecut;

express(.nodecnt.).parent := expre~s(.nodeptr.).parent;

end; (3 then alter poi ntere t)

(I link the new node to the present node 3)

express(.nodeptr.).parent := nodecnt;

express(.nodecot.).Ichild : nodeptr;

end (3 chained binary operator 3)

else begin (* cba ned unary operator encountered 5)

if expren(.nodeptr.).val e

then express(.nodeptr.).lcbl d nodecnt

@I se express( . nodeptr. ).rcb I d nodecat;

espress(.nodecat.).parent :nodeptr; ,

end; (S cbai ned unary operator 8)

... 4
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(z mve to the new node s)

nodeptr :- nodecat;
end; (2 chal sod algebraic operator encountered a)

(S place the operator into the empty node S)

if ezpresn(.modeptr.).vale ' then begin

if (letter - '[') or (letter '(')

then begin 
%

express(.nodeptr.).vsl ue :- substr(buffer,i,3); _

i :-- # 3; (S skip the operator charaters 2)

end (s If letter then S) ..
else begin

if ((letter z '2 ) and (buffer[next] '2')) or 
-

((letter in ['','<'J) and (buffer[next) in!':','>'D)

then begin

express(.nodeptr.).value := substr(buffer,i,2);

i : * i + 2;

end

else begi a

i f aboval flag = false %

then express(.nodeptr.).value := letter;

i : = i + 1; (1 skip the operator character S)

if (letter = ') and (absvalflag = false)

then absvalflag true'..

else abaval flag : fal se; .%

end; (* if letter else X)

end; (S if letter else S)

end; (* place operator into the empty node 2)

end; (I if algebraic operator a)

If letter ' , then I := I + 1;

end; (2 while i do 2)

(S return to the top node 2)

while ezpross(.nodeptr.).parent <> 0 do

nodeptr := express(.nodeptr.).parent; ,

end; (2 if assignoper false 2) ',

(2 if assign operator exists, place it at the top of the tree S) %

if assignoper - true then begin

nodecnt : nodecnt + 1;

express(.nodoptr.).parent :n uodecnt;

express( .nodecnt.).lchil d : odeptr;

expa'ess(.nodecat.).value :';

nodeptr z sodecnt; i-.

odecst : nodecut • 1;

express(,sodeptr.).rchld aodecnt;

express(.nodecnt.).parent modeptr;

express(.nodecat.). value : substr(buffer, 1,index(buffer,'::*)-i);

end; (2 If assignoper the 5)

end; (S procedure I AParser 2)
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procedure IATraftslator (var expressa Tree; nodeptr :integer);

(2 translate the IA expressions by evaluating the binary tree 9)

bgin (a I A~ransl ator 5

it express(. nodeptr. ).lchi 14 (> 0
then IATranslator(express~express(.nodeptr.).Ichild);

if express(.aodoptr.).rchild (> 0

then IATransi ator(express,express(. nodeptr. ). rchilId);

it ezpress(.nodeptr.).value > Of

then begin (S execute the operator 2)

it ((expresn(.nodeptr.).lchild:O0) and (expressC.nodeptr.).rchild=0)) or

((express(. nodeptr. ).I chi Ido) and (ezxpreea(.nodeptr.).rchkild>Oa))
then Unaryoperation (express,nzodeptr);

if (express(.nodeptr.).lcbild )0) and (express(.nodeptr.).rchild 0>0)

then Dinary~peration (express, node pt r);
end (S operator execution 9)

else if express(.nodeptr.).pareat (> 0 then begin

(t remove an unnecessary pair of parentheses 5)
if express(.ezpress(.nodeptr.).parent.).Ichild =nodeptr

then (S link the parent node's left child to this node's... 5) r.

it expresa(.nodeptr.).lchild <> 0

then begin (S ... lIeft chilId 5)
express(.express(.nodeptr.).parent.).Ichild express(.nkodeptr.).lchild;

express(.expresa(.nodeptr.).lchild.).parent express(.nodeptr.).parent;

end
else begin (5 ... ri ght chilId 2) O
espress(.expreus(.nodeptr.).pnrent.).lcbild express(.nodeptr.).rchild;

express(.ezprees(.nodeptr.).rchild.).parent express(.nodoptr.).pareat;

end;
it express(.ezprese(.nodeptr.).parent.).rchild = nodeptr

then (a link the parent models right child to this node's... t)%

if express(.nodeptr.lcbiid <> 0
then begin (s ... left child S)
express(. express( .nodeptr. ). parent. ). rchi Id express( .nodeptr. ). Ichi Id; 1

express( .express(. nodeptr. ). Ichild.). parent ezpress(. nodeptr. ). parent;

enad

else begin (S ... right chilId 1)
express(.express(.nodeptr.).parent.).rchild express(.nodeptr.).rchild;

express(.express(.nodeptr.).rchild.).paremt express(.uodeptr.).parent;

end;
end; (* remove parentheses 5)

end; (S IATranstator 2

begi n (5ai n progr am I mage-At gebraPreprocessor %

reset (input);

rewri te (output);

'A
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(S istialize variables and set intermediate operands to false 2)

:1. RXi :t false0; 1 22. ext f fal Se; i 3.eXit :~ false;
R4.e011 t f' fal Se; 5 lehi St fals.t;

tli. exi at =fat se; tR2exis f1* al se; tP3.exi at fal se;

114.&xiat false; tAS.eXigt #= alse;

buffer :z

(3 I ni tializec the li sts of image. templ ate, and scatlar variables 2)

lMageLaSt(.1.) :- 'I l'; 1.ageLiat(.2.) :'iR2Z;

lmageLlSt(.3.) :'i RV; libageigt(.4.) :=' 14';

Image~list(.5.) P=iHR59;

NUM! ingeNainS 5;

for i : Numimageldams+1 to taxNams do ImageLi St(.i .) := 09;

Tempi ateLa st( .1.) 'tRl'; Tempt ateLi st( .2.) ' 132'.

Tempi ateLi st(.3.) 'tR31; Temi pateLi st(.-4.) :'iRV

Tempilate Mat(. S. I 'IR51;

Numlempl ateNames 5;

for i : HuulemplateNammsel to MaNas do Tempi ateLi st(.i) ';

Scalarlist(.3.) .maxval';

Nuu~cat arNames 3;

for I :=NumScalarNames~i to Max~ames do ScalarList(.i.) '; i

(* retrieve an existing Imaget Algebra file to be translated 2

open(InFi le,'Itransl at.i a',unknown);

reset (InFile) ; .

(5change all letters in the file to lower case; 2

(2 remove any commentsa and bl ank linses f rom t he fil 5 )

open( TmpFiI e,'It ranal at. t p' Iunknown);

rewrite (TapFile);

wri tel naC ... translating letters to l ower case; removing comments ');

readin (InFile, buffer);

while (eof(InFile)=fals*) do begin

(* remove commnts from the line 2)

while i ndex(buffer,I(V') 0 do begin

buffer := I' + buffer + ' ; (a required for proper operation of substr S)

if i ndex(buffer,'Is)') (> 0

then buaffer :zsubstr(buffer,l,index(buffer,'(2')-l) +

subst r( buffer, Index( buffer,'IS)')+2, 1engt h( buffer) -Indexc buffer,'x)')1)
else buffer :=substr(buffer.l~index(buffer.'(2')-l);

end; (2 while comnt do a)

(S remove trailing blanks*2)

SIengt h( buffer);

whalIe (i I ) and ( buffer(iJ '' do a i - 1;

buffer :=substr( buffer, 1,i );

(5 translate all letters to lower case 9)

for I :-I to lengtb(buffer) do

if ord(buffor(i)) in (6s.-901 then buffer~i] chr(ord(buffer(iJ)432);

d%

%
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(S prinat non-bl auk lanese to TmpFalIe S)

if i 1, then writeln (TueFi le, buffer);

readl n (InFile,buffer);

end; (2 while not eat a)

(S wri te the last linet2

writein (TmpFi Ie, buffer);

clos. (TapFile);

close (I nFi Ie);

(build the PASCAL file from 'translat.tmp' V)

openk( InFj I e. 't ranal at. tap', unknown);

reset ( InFi Ie) ;

open( Pfi I e, ' t ransl at. pas' Iunknown);

rewri to ( PfilIe) ;

(S find the program mame if it exists 2

read] n (XInFi Ie, buffer);

i f ( index( buffer,'Iconst I')=0) and ( index( buf fer,'It yPe I =0O) and

(index(buffer,'var I )=O) and (index(buffer,'begin ')=o)

then Nam buffer

elsBe Nam IUnnamed':

(2 determine the data type of the image and template operands 2

I mageType lDefaultlmage;

TemPl ateType DefaultTempl ate;

(9 search the decl aration section S)

while index(buffer,'begln') =0 do begin

readin (InFi Ie, buffer);

i f i ndex(buffer, 'type ') <> 0 them

(2 find the data type declaratkons if they exist a)

while ((index( buffer,'Iconst ') 0) and (index(buffer,'var ') 0) and

(index(buffer,'begil) 0)) do begin

(2determne the data type of the images and templates 2)
if i ndex(buffer,Ii type,) (> 0 then begin

if index(buffer,'integer') (> 0 then ImageType 'integer';

i f i ndex( buffer,'Ireal' I <) 0 then imagerype : 'real';

end; (* if itype then 2)

if index( buffer,'Ittype' ) <> 0then begin%

if indez(buffer.'integer') (> 0 then TemplateType 'integer';

if index(buffer,'reall (1 0 then TemplateType 'real';

end; (X if ttype then U)

readl n (InFi c, buffer);%

end; (I while not 'conxt ','var It or 'begin' S)

end; (a9 whalIe not ' begi n' 2)

(2 inmclude the proper i mage al gebra and i nput /out Put routi nes

if (ImageType 'integer') and (TemplateType -'integer')

then witeln (Pfile,'(inerm t(''ii aopr.ev'',,io.env'')1

else wra tel n ( Pti Ie, i nbera t( ' 'raaoper. cmv'', ra 0.env' '11 );

writela (Pfile,'progran ',Nam,' (input,output); ');Il

r
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wri tol a' ... Processing user-defined types, constants, and variables');

(a find and append any User defined constants here 5)

reset ( InIFile) ;

( 2 searc h thbe ent ire decl arat i on sect i on f or const antsa 5)

read a ( I n~ I e, buffer) ;

whalIe inadex( buffer,'-begina-) =0 do begin

readl n ( I Fi Ieibutffor);

i f inadex( buffter,'Iconst ') (> 0 then

(S process each additional constant declaration line 9)

whilIe (inadex(buffter,'t ype ' ) =0) and ( indez( buffter,'var *) 0) and

(i dez( but ter,'begia' ) -- 0) ) do begina

(S st ri p t he reserved war d 'type' f rom t he butffer 5)

if indez(buffer,'const ' )0

t hen butffer s ubst r(buffteriadex( bufer,'Iconst ')t,

length(buffer)-indez(buffer,'const ')-4);

(2 remove allI bl anks from the i ne 3)

oldbuffer buffer;

buffer

for i 1 to length(oldbuffer) do

i f o1 dbuffter[ i]( I ' ' then buffter buffter + ol dbufftera i;

*S writea the const decl aration as is and ensure each line ends with a '; )

J f ndez( buffer,') 0Othen write n (Pf Iea,' coast 'buffer, I;'I)

el se wri telna ( PfilIe.' const 'buffter);

readl n ( InFi Ie, buffer);

end; (S while not 'type','var', or 'begin', do 2)

end; (S while not 'begin' do 2)

(2 find and append any user defined types here 5)

reset (inriie);

(S search the entire declaration section for types P

readl n (InFi I . buffer);

while index(buffer,'begin') =0 do begin

readla (lnFiIt. buffer);

if i ndez( buffer,'Itype ') () 0 then

(S process each additional type declaration line a).r

while (( index( buffer.,Iconst ') 0) and (indez(buffer,'var 1 0) and

(index(buffer,'begia') 0)) do begina

(I write the type declaration as is if it i not i type or ttyp# 5)

i f ( index( buffer,'Ii type') 0) and ( index( buffer,'Itiype') 0) t hen begi n

(x strip the reserved word 'type' from the buffer 5)

i f i ndez( buffer,'Ityp* ') (> 0 thena

buffer :=substr(buffer,index(buffer,'typ. ')*4,

Ilengs h( buffer)-iados(buffer.'type ')-3).

(I remove allI bl anks from t he Iineo 5) I

oldbuffer :zbuffer;

buffer : 1

for i I to Ilengthb(ol dbuffer) do

i f ol dbuffer( i t b '' he buffer buffer # ol dbufforl i I;*

i f i ndex( buffer,'' I othen wri tol aPf Ie.' ItIype I, buffpr,''

els# wri tel n (Pfile,' type '.buffer);
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end; (2 if type decl aration 5

read!. (InFaI.e, buffer);

end; (a whalIe not Icarnal ''var ', or 'begina' do 2)

end; (a whilIe not I'begina' 3)

(a find and append any user defined variables here 2)

reset (!nFil);

(a search the entire declaration section for variables a)

read! a C Inri Is, buffer);

while iadex(buffer.'begin')=0 do begin

readin (lnFile,buffor);

if a ndex( buffers 'var ' ) <) 0 then

(a process each additional constant declaration line a)

while (( index( buffer,.'conat ') 0) and 0indez( buffer,'Itype 1) 0) and

(andex(buffer,lbegan') 0)) do begin

(a strip the reserved word 'vat, from the buffer s)

if indtx(buffer.'var'1) (> 0

then buffer :=substr(buffer,index(bufferg,var ')*3. e.

length(buffer)-index(buffer,'var ')-2);

(2 remove all blanks from the line S) r

oldbuffer :~buffer; 
J

buffer :

for i :=I to Ilength( ol dbuffer) do

if ci dbuffer(i) <>' then buffer :=buffer * ol dbuffer(i ];

(3wri to t he vari abile decl arati on as isa and ensure each i ne ends with a a ) II

if index(buffer,';') = 0ten writel (Pflle,' var ',buffer,#;')

else writeln (Pflle,' var '.buffer);

(if the line contains any image, template, or scal ar decl arati ons, 8)

(S append these name to the appropri ate name list 5)

if (index(bufferi':imageO ) (> 0) or (index(buffer,' i mageP 0) or

(imdex( buffer,'I:-tempi ate') <> 0) or (lndez(buffer.' template') (> 0) or

(indez(buffer.':luteger' ) <) 0) or (lndex(buffer,' integer' ) <) 0) or

(index(buffer':real- ) <> 0) or (indea~buffer.' real' ) ()0) then begin

(I determine the type of variable declarations *)

DeclaredType : substr(buffer,inde(buffer,':')e1.4);

(S extract the variable name from the buffer t)

a :=1

whale i < index(buffer,':') do beginP

wha l e C buf fer(i <) ] 1. ) and ( buf feri j <> '' do j : J * I

if (j-i) >0 then begin

i f DeclaredType 'inag' then begin

Num! magewams :Mun! magemames * 1i

lmageLiaet( .Numlmagenames.): substr( buffer,ai j-i)

end; (5 if image decl arations then 5

a f Decl are dType =Itemup' the be bgina

Numlempiatema := NuawempI atewams + I;

Tempi at eLi st.Nourreepiat*Naws.): subst r(buffer aj -i)

end; (5if template declarations then 2)
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if (DeclaredType - lintel) or (DeclaredType z real') them begin

Num~ca ar~ais Nuincal arlgais + I;

cl ar11Lat(NuamScaar as. ) :' - ubst r(buffor, i, j-i)P

end; (a if scal ar decl arati ons than S)

end; ( 2 i f j-i then 3)

i := * i; M

end; (2 whiIle bufferti I do S)

end; (2 i f I ings, tempi ate, or scat ar docl arati on 3)

readln (InFi low buffer);

end; (2 while not 'conft'..'typel, or 'begin'p do 2)

end; ( a wilIe not ' begi a' do 3)

(2 t ransl at e thbe I A f IlIe t o PASCAL procedure callIs 2)

(s find the beginning of the executable code section 9)

whilIe i ndex( bufer,'Ibgin') =0 do readl n ( I FilIe, bufer);

writel n(PFi low' begin (9program',l~am,'a )

wri tel n (Pf ilIe, 'reset (input); ';.'

wri tel n ( Pfi Ie,' rewri te (output);')

(S ti nd and reposi ti on ay i nyari ant tempt ate defi ni ti ous here 2)

while eof(1nFile)=false do begin 4

whilIe ( ( index( buffter, Ii avari ant')=0) or ( index( buffer, tempilate' ) =0) and

( eof( InFilIe)=f al ae) do readlna ( InFi Ie, buffer);

i f ( index( buffer, Ii nvari ant) < 0) and ( index( buffter,'tempilate-) ) 0) t hen begi n

(a ext ract t he i ndentati on from t he decl arati on In )

Indent : '

while biffer(i] do begin Indent := Indent +. i :4i + 1; end;0(5 e xt ract t he templ ate same from thbe decl arati on in at2)

i nd sex( butffer,'I t empl atel) + 8;

wilIe butffe r fi] do i :~i*

while (i length(buffer)) and ( buffer~jl <> ' ) do j :~j + 1;

TempNam : subst r( buffer, i, J-i+ 1);

(5 read past t he begina st atement 2)

readl m ( I nFi I e, buffter);

(2 read the first line of the tempi ate defi ni tion

readla (lnFile, buffer);

1;

Ca process each addi ti onal i ne of t he templ ate definoiti on s)

while index(buffer,'cnd') 0O do begin 4

(8 wri to t he necessary docl arat ions for each tempi ate cell 15)%

wri te C Pfi I P. Indent. 1empNa, .cfg(. 'j, .. r: 4)

if (ij de z(buffer,',c'-inadox(buffer,'Cr'-) 2".4

then wri te C Pfl Iesubstr( buffer, indexC buffer, 'Cr') 2,

nodexCbuffer, ',,c ) -4 dexC buffer, *( r ) -2). ' 

else write (Pfile.- 0;1);

write CPfi Ic.' ,epa,'cg.'j')c ';

-w,-
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if (index(buffer,')=')-index(buffer,',c')) >2

then writ* ( Pfi Ie, substr( buffer, index( buffer,I C' )+2,

i adeiC buffer, ') ) -a ndex( buf fer, ' ,C') -2). ';'

elm* write (Pfile, 10;1);

write (Pfaie*, ',r~ki,.f( ,, )wu

if index(buffer.#;P) -0

then writeln (Pfilt,mubstr(buffer,i ndex(buffer.'=').1,

lemgth(buffer)-i udeiC buffer,'=' )). ';'*)

else writeln ( PfllIe, substr(buffer,i ndex( buffer, I' )+.1

ndex(buffer, '; ' -a ndex(buffer, '='-)

S+ 1;

readI n (I nfileI, buffer);

end; ( 2 wbilIe I'end' do 2)

end; ( S theon i nvari ant tempi ate def ini t ion 2

end; ( S whilIe not eof 2)

(S find the beginning of the executable portion of the routine 2)

reset (InFile);

read] a ( InFi Ie, buffer); %

while index(buffer,'begin') =a0do readin (infile,buffer);

(2 read each line of the file and translate accordingly 2)

wri teln I' -.proceasing the executable statemnts');

readin (I nFi Ie, buffer);

whilIe i ndez(bnffer,'ead.') =0 do begin

(9 if the line doesn't contain any PASCAL contructs or explicit 2)

(2 IA procedures, then translate the IA expression to PASCAL 2

if ((index(buffer,'and *1 0) and

(index(buffer.'array' 0) and

(inadex(buffer.'begin' 0) and

(index(buffer,'case ' ) 0) and

(index(buffer,'const ' 1 0) and

(index(buffer,'do 1 0) and

(inodes( buffero Idownto ' 1 0) and

(lndox(buffer,'else 1 0) and

(inadex(buffer,'end' ) 0) and

0index(buffer,'Ifor '1 0) and r

(index(buffer,'function 1 0) and

(index(buffer,'if 1 0) and

(index(buffer,'anput' 0) and

(i odex( buffer,'-mod '1 0) and

(index( buffer,' not ') 0) and

0 ndex(buffer,'of 1 0) and

0I adex( buffer, 'or 1 0) and

(index(buffer,loutput' 0) and

(i ndex( buffer, Iprocedure I 0) and

Ci ndexf buffer, 'program ) 0) and

Ci dez~buffer,'record 'I 0) and
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( i dez(buffer, Ostrlng' ) 0) and

( indez(buffer, then ' ) 0) and

(index(buffer,'type 1 0) and

(indez(buffer,'to 1 0) and

(Cindex(buffer. Iuntil 1 0) and

( index(buffer,'-var ' ) 0) and
(inadex( buffer, -whil I e 0) and

(indez(buffer,'with ' ) 0) and

(i ndox(buffer,$booleau' 0) and

(adez(buffer,'byte' 0) and

0index( buffer,'Ichar- ) 0) and

(inadex(buffer,'close' ) 0) and

0 ndex(buffer,'integer' 0) and -

0indez(buffer,'open 1 0) and
(inde~bufer.'rad- ) an

(indez(buffer,'read ) 0) and

i dez( buffer.' real' ) 0) and

0i dex(buffer,'Ireaeit' ) 0) and

( i ndec( buffer, 'rerte 0) and

0indez(buffer, wtet z 0) and

( i der(buffer,'l mage' = 0) and

( indez(buffer,'Iconfi gtep = 0) and

(i ndex( buffer, I tempi ate- = 0))

then begin a transl ate t he i ne from IA to PASCAL a)

(3 insiti al ize t he i ndentati on for t he i ne a)

indent 'S

while. buffer(iJ do begin

indent :z i ndett

i + 1

end,

(S remove all blanks from the buffer a)'.

oldbuffer :'buffer;

buffer :

for i I' to I engthM *Idbuf fer) do

if ol dbuffer(i) ] > ''then buffer := buffer + ol dbufferi ];

(S delete the acm-colon from the end of the line 2)

if indez(buffer,';') () 0 then buffer: aubstr(buffer,1,,ndex(buffer,';')-1);

(s tranal ate parentheses to non-comit nt deli mters for writing to Pfil sc )

ol dbuffer := buffer;

for i 1= to I engtb(ol dbuffer) do begi n

if ol dbuffer[i = 'I(' then ol dbuffer(ai *

if ol dbuffer~i) = I)' then oldbuffer(i I

end; (a for i d,, a)

(2 print the [A expresaion to ?File a)

writel n (Pflleindent,'(22229 ',ol dbuffer,' 3222)');

(2 pad the string with one blank on the endsa)

buffer:= buffer. '+

'p B-20 -
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(5 initialize the expression binary tree to null I)

for i I to MaxNode do begi n

Expression(.i .).value: '';

Expressioo(.i .). parent 0;

Expression(.i.).lcblld: o; 

Expressioa(.i.).rcild : O;

end;

(3 evaluate the expression and translate the line from IA to PASCAL 1)

IAParser (buffer, Expression, nodeptr);

IATranslator (Expression, nodeptr);

end (s translation from IA to PASCAL $)

else begin (s PASCAL/IA construct or template definition a)

(9 translate parentheses to non-comment deliiters X) S

for i I to I engt b(buffer) do begi n

if buffer[i] = 'C' then buffer[i ) '(';

if bufferfi] = ')' then bufferfi )

end; (x for i do S) "

if index(buffer,'variant') = 0

then begin (i PASCAL/IA construct: write the line as is 5)

wri te (Pfile, buffer);

(2 ensure the lines end with a ';' unless the buffer ends 5)

(wi th the reserved wrds 'begin', 'do', 'thea', or 'else' 5)

if (index(buffer,.;')=o) and

(i ndextbuffer,'begin')<>lengthtbuffer)-4) and

(index(buffer,'do')<>lengtbbuffer)-) and

(index(buffer,'tben')<>lengtb(buffer)-3) and

(index(buffer,'else')<>lengthbuffer)-3)

then writeln (Pfile,';')

else writeln (Pfile);

end (* PASCAL/IA construct 5)

else begin (S template definition encountered - skip it s)

readln (InFile, buffer);

while index(buffer,'end') = 0 do readln (InFile,buffer);

end; (S else template definition s)

end; (2 else PASCAL/IA construct or template definition 5)

readl n (InFile, buffer);

end; (a whi I e not EOF 5)

writel n Pfile,' end. (SI program ',Name,' 5)');

close (Pfile);

end. (2 procedure Image-Algebra Preprocessor 8)

7f

i
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Appendix C: AFIT Input /Output Operations

[jnherit('riaoper.env'), environment('rio,env')] S

Module Real _IATOOperations (input,output);

procedure GetImage (var A : Image; FileName NameStr);

(t prompt and retrieve the requested image from disk *

var i,j :integer;
row,col :real;
InFile :file of real;

begin (* procedure Get~mage *

if FileName zthen begin
write ('read image from file:')
readln (FileName);
end; (* if FileName

if index(FileName,'.') = 0
then FileName := FileName + '.img';

open(InFie,FileName,uflknowl);
reset (InFile)
(read in the input array *

read (InFile,row,col);
A.row :round(row);
A.col :zround(col);

for i :=1 to A.row do
for j :=1 to A.col do read (InFile,A.gray(.i,j.);

close (InFile);
end; (* procedure GetImage *

procedure PutImage (A :Image; FileName :NameStr);
(write the image to an external file

var i,j :integer;
OutFile : file of real;

begin (* procedure PutImage
if index(FileName,'.') =0
then FileName := FileName + ' .img';

open(OutFile,FileName,ulknown);
re'.rite (OutFile);
write (OutFile,A.row,A.col);
for i :z1 to A.row do
for j :=I to A.col do write (OutFile,A.gray(.i,j.));

close (OutFile);
end; (t procedure PutImageU
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procedure GetTemplate (var A Template; FileName NameStr);
(prompt and retrieve the requested template from disk S)

var ont :integer;
rowoff,coloff,weight :real;
InFile :file of real;

begin (* procedure GetTemplate
if FileName = 'then begin
write ('read template from file:')
readin (FileName);%
end; (* if FileNameU

if index(FlIeName,'.') =0
then FileName := FileName + '.tmp';

open(InFile,FileName,unknown);
reset (InFile)
(read in the input array

cnt := 0;
read (InFile,rowoff,coloff,weight);
while (EOF(InFile)=false) do begin
cnt := cnt + 1;
A.cfg(.cnt.).r :round(rowoff);
A.cfg(.cnt.).c :zround(coloff);
A.cfg(.cnt.).w :weight;
read (InFile,rowoff,coloff,weight);
end; (*while not EOF

A.num, : nt;
close (InFile);
end; (* procedure GetTemplateU

procedure PutTemplate (A : Template; FileName :NameStr);
(* write the template to an external fileU
var i : integer;

OutFile : file of real;
begin (* procedure PutTemplate
if index(FileName,'.') = 0
then FileName := FileName + '.tmp';

open(OutFile,FileName,unknown);
rewrite (OutFile);
for i := I to A.num do
write (OutFile,A.cfg(.i.).r,A.cfg(.i.).c,A.cfg(.i.).w);

close (OutFile);
end; (* procedure PutTemplateU

end. (t Module Real _IA_TO_Operations *
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Appendix D: Automated Image Algebra Translator

S! Translate Image Algebra

$! function - This command procedure translates an image
$! processing function from its description in

the image algebra to an executable file.

$! format - @TIA [filename]

$ on error then exit N
$
$ if p1 .nes. "" then goto preprocess
$ inquire pl "image algebra routine to be translated

$ preprocess:
$ copy 'pl'.ia translat.ia %
$ write sys$output ".. .preprocessing"
$ r preproc
$
$ write sys$output "...compiling"
$ pas translat.pas
$
$ write sys$output ". ..linking" P
$ link translat,iaoper,io
$

$ copy translat.exe 'pl'.exe
$ write sys$output "...executable file built"

$ del translat.*;*
$ purge

M °.

P.°

D- I

A4

%4



Bibliography

1. Ritter, Gerhard X. and others. Image Algebra Tutorial,
Version 1, September 1985. Contract F08365-84-C-0295.
University of Florida, Gainesville FL, September 1985.

2. Ritter, Gerhard X. and others. Image Algebra: Final
Report for Phase I of the Project, September 1984 -
September 1985. Contract F08365-84-C-0295. University
of Florida, Gainesville FL, September 1985..-

3. TurboPiscal Version 3.0 Reference Manual. Borland
International, Inc., Scotts Valley CA, 1985. /

4. AA-L369B-TE. Programming in VAX Pascal. Digital Equipment
Corporation, Maynard MA. March 1985.

5. Ritter, Gerhard X. and others. Image Algebra Project:
Phase II, Program Review 2. Contract F088365-84-C-0295.
University of Florida, Gainesville FL, March 1986.

6. Pratt, William K. Digital Image Processing. New York:
John Wiley and Sons, Inc., 1978.

7. AA-D034D-TE. Programming in VAX Fortran. Digital Equipment
Corporation, Maynard MA. September 1984.

8. Hancock, Les and Morris Krieger. The C Primer. New York:
McGraw-Hill Book Company, 1982. -V

9. Conway, Richard and David Gries. An Introduction to
Programming: A Structured Approach Using PL/I and PL/C.
(Third Edition). Cambridge, Massachusetts: Winthrop
Publishers, Inc., 1979.

BIB-I

*.o



VITA e

Captain Christopher J. Titus was born on 3 December 1959

in Melrose, Massachusetts. He was graduated from Kingswood

Regional High School in Wolfeboro, New Hampshire, in 1978 and

attended Cornell University from which he received the degree

of Bachelor of Science in Electrical Engineering in 1982. J.

Upon graduation, he received a commission in the USAF through

the ROTC program. He was employed as an analyst for the

Foreign Technology Division at Wright-Patterson AFB, Ohio,

until entering the School of Engineering, Air Force Institute

of Technology, in May 1985.

permanent address: Keewaydin Rd, Star Route 1

Wolfeboro, New Hampshire 03894

o..

Ap4

Va-

VIT-1IN

,< : ", ."., .,.,,€,,,,,, < ;4;'. .'.'., - -. '* .' ,Y ~ : .' > -; ..:-,. .$...V-- 4,i< .-..:." <:<;-



UNICLASSIFIED / ,
SIKICTIRCLASSIFICATIN OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION (AVAJLABILITY OF REPORT

, Approved for public releasel
b. DICLASSIFICATION DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GLS/EG/86D-39
60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

School of Enieering _AFT/ENG

GL ADDRESS (City State, and ZIP Code) 7b. ADDRESS (City, State, end ZIP=Code)
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 4,5433

Ba. NAME OF FUNDING /SPONSORING Ib. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Air Force ArmeAent Laboratory AFATL/ASE
Bc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Advanced Seeker Division PROGRAM PROJECT 'TASK WORK UNIT
Air Force Armament iLaboratory ELEMENT NO. NO. NO CCESSION NO.

Eglin AFB, Florida 32542 r
11. TITLE (nclude Security Classification) -7-o..rw AF9 -11f.

A PASCAL 3IMHETTION OF THE IMAG ALGENIA rA'A ?7
- . I-. ~ ' r i evelopmfl tf

12. PERSO N A L A UTHO R(S) Air . ... . . . ... . .1 0

Titus, Christopher J. , B.S. , Captain, UJSAF rgt Pla' AluQi 14

1. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Montt Day)' 5. PAGE COUNT
!E Thesis FROM TO 1966 December 124

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverue If necessary and identify by bock number)
F ELD GROUP SUB-GROUP image processing techniquesl image algebra
12 01
17? 07 1

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This study produced an image processing algorithm development tool on a VAX computer

system using the recent advances in an Image Algebra developed by C. Ritter et al at the
University of Florida. The image algebra provides the basis for a hardware and software
independent environment for the expression of practically all image processing algorithms.

The goals of this project were twofold. The first goal was the implementation of the
image algebra operators in a high level language to achieve hardware independence. The
second goal was the design and Implementation of a flexible preprocessor that could trans-
late image processing algorithms, written In the image algebra language, into a high level
computer language which could be compiled and executed on the VAX computer.

The implementation was achieved in the PASCAL computer language. All of the basic

Image algebra operators and the preprocessor were successfully programmed on the VAX
20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

WUNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCIASSIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Dr Matthew Kabriaky 13-2 -3030 AFIT/EG
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNClASSIFIED

;i> '." '. ." -' " ' ". '.'"." " ' "" ." .' .. .



UNCIASSVTED

19. computer, but a complete software independence of the image algebra was not
achieved. This version also produces very large blocks of executable code for ..

relatively simple algorithms.

Examples of the power and simplicity of the image algebra language and
preprocessor environment are included.

UN.-,., ..

! U CL SS1 --

,,.% .i

- ... -..... "- - . . '-"----"" " " '" ."-"."-" " -" "'-" """". " "",'- "'-';" .;""" '" "," '' '" * , " "'



I'.

F

1
I.

A

C.

F

1*

F

I,


